Properties

Label 2-783-1.1-c1-0-7
Degree $2$
Conductor $783$
Sign $1$
Analytic cond. $6.25228$
Root an. cond. $2.50045$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.77·2-s + 5.68·4-s + 2.28·5-s − 1.15·7-s − 10.2·8-s − 6.33·10-s − 5.37·11-s + 2.96·13-s + 3.19·14-s + 16.9·16-s + 3.70·17-s + 0.505·19-s + 13.0·20-s + 14.9·22-s + 7.09·23-s + 0.221·25-s − 8.21·26-s − 6.55·28-s + 29-s − 5.10·31-s − 26.6·32-s − 10.2·34-s − 2.63·35-s + 7.89·37-s − 1.40·38-s − 23.3·40-s + 3.69·41-s + ⋯
L(s)  = 1  − 1.96·2-s + 2.84·4-s + 1.02·5-s − 0.435·7-s − 3.61·8-s − 2.00·10-s − 1.62·11-s + 0.821·13-s + 0.853·14-s + 4.24·16-s + 0.898·17-s + 0.115·19-s + 2.90·20-s + 3.17·22-s + 1.47·23-s + 0.0443·25-s − 1.61·26-s − 1.23·28-s + 0.185·29-s − 0.916·31-s − 4.71·32-s − 1.76·34-s − 0.444·35-s + 1.29·37-s − 0.227·38-s − 3.69·40-s + 0.577·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(783\)    =    \(3^{3} \cdot 29\)
Sign: $1$
Analytic conductor: \(6.25228\)
Root analytic conductor: \(2.50045\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 783,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7109145682\)
\(L(\frac12)\) \(\approx\) \(0.7109145682\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 2.77T + 2T^{2} \)
5 \( 1 - 2.28T + 5T^{2} \)
7 \( 1 + 1.15T + 7T^{2} \)
11 \( 1 + 5.37T + 11T^{2} \)
13 \( 1 - 2.96T + 13T^{2} \)
17 \( 1 - 3.70T + 17T^{2} \)
19 \( 1 - 0.505T + 19T^{2} \)
23 \( 1 - 7.09T + 23T^{2} \)
31 \( 1 + 5.10T + 31T^{2} \)
37 \( 1 - 7.89T + 37T^{2} \)
41 \( 1 - 3.69T + 41T^{2} \)
43 \( 1 - 5.26T + 43T^{2} \)
47 \( 1 - 7.73T + 47T^{2} \)
53 \( 1 - 12.6T + 53T^{2} \)
59 \( 1 + 7.09T + 59T^{2} \)
61 \( 1 - 0.599T + 61T^{2} \)
67 \( 1 - 2.70T + 67T^{2} \)
71 \( 1 - 11.5T + 71T^{2} \)
73 \( 1 + 8.69T + 73T^{2} \)
79 \( 1 + 5.08T + 79T^{2} \)
83 \( 1 + 16.4T + 83T^{2} \)
89 \( 1 - 11.6T + 89T^{2} \)
97 \( 1 - 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18092857673370978014492182650, −9.437972462080472960077165725095, −8.802777489906141213772654415830, −7.83087629717116988379337659793, −7.20157071907832747527179245477, −6.06699302138059469757592235356, −5.52824150096782372185301712196, −3.11643486341628840164076397706, −2.27795072065360536853934638507, −0.932267702995663823057557968232, 0.932267702995663823057557968232, 2.27795072065360536853934638507, 3.11643486341628840164076397706, 5.52824150096782372185301712196, 6.06699302138059469757592235356, 7.20157071907832747527179245477, 7.83087629717116988379337659793, 8.802777489906141213772654415830, 9.437972462080472960077165725095, 10.18092857673370978014492182650

Graph of the $Z$-function along the critical line