Properties

Label 2-783-1.1-c1-0-21
Degree $2$
Conductor $783$
Sign $-1$
Analytic cond. $6.25228$
Root an. cond. $2.50045$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.554·2-s − 1.69·4-s − 3.04·5-s + 3.15·7-s + 2.04·8-s + 1.69·10-s + 1.58·11-s + 0.801·13-s − 1.75·14-s + 2.24·16-s − 4.44·17-s − 2.55·19-s + 5.15·20-s − 0.878·22-s − 2.64·23-s + 4.29·25-s − 0.445·26-s − 5.34·28-s − 29-s + 1.30·31-s − 5.34·32-s + 2.46·34-s − 9.63·35-s − 0.704·37-s + 1.41·38-s − 6.24·40-s − 5.08·41-s + ⋯
L(s)  = 1  − 0.392·2-s − 0.846·4-s − 1.36·5-s + 1.19·7-s + 0.724·8-s + 0.535·10-s + 0.477·11-s + 0.222·13-s − 0.468·14-s + 0.561·16-s − 1.07·17-s − 0.586·19-s + 1.15·20-s − 0.187·22-s − 0.551·23-s + 0.859·25-s − 0.0872·26-s − 1.01·28-s − 0.185·29-s + 0.234·31-s − 0.944·32-s + 0.423·34-s − 1.62·35-s − 0.115·37-s + 0.230·38-s − 0.987·40-s − 0.794·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(783\)    =    \(3^{3} \cdot 29\)
Sign: $-1$
Analytic conductor: \(6.25228\)
Root analytic conductor: \(2.50045\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 783,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 0.554T + 2T^{2} \)
5 \( 1 + 3.04T + 5T^{2} \)
7 \( 1 - 3.15T + 7T^{2} \)
11 \( 1 - 1.58T + 11T^{2} \)
13 \( 1 - 0.801T + 13T^{2} \)
17 \( 1 + 4.44T + 17T^{2} \)
19 \( 1 + 2.55T + 19T^{2} \)
23 \( 1 + 2.64T + 23T^{2} \)
31 \( 1 - 1.30T + 31T^{2} \)
37 \( 1 + 0.704T + 37T^{2} \)
41 \( 1 + 5.08T + 41T^{2} \)
43 \( 1 + 12.6T + 43T^{2} \)
47 \( 1 + 8.40T + 47T^{2} \)
53 \( 1 + 1.24T + 53T^{2} \)
59 \( 1 + 5.57T + 59T^{2} \)
61 \( 1 - 2.11T + 61T^{2} \)
67 \( 1 - 3.81T + 67T^{2} \)
71 \( 1 + 12.9T + 71T^{2} \)
73 \( 1 - 13.2T + 73T^{2} \)
79 \( 1 + 11.7T + 79T^{2} \)
83 \( 1 - 17.3T + 83T^{2} \)
89 \( 1 + 6.82T + 89T^{2} \)
97 \( 1 + 12.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.810098007281305733176306061196, −8.650945849477992197456182697370, −8.350396617569208175922957530179, −7.61979130120135805288361477214, −6.55677010360836379001877574531, −5.01468857942782814709560509575, −4.40310452617822933580224418960, −3.60772467088832601669992093787, −1.65078877860530365609514625801, 0, 1.65078877860530365609514625801, 3.60772467088832601669992093787, 4.40310452617822933580224418960, 5.01468857942782814709560509575, 6.55677010360836379001877574531, 7.61979130120135805288361477214, 8.350396617569208175922957530179, 8.650945849477992197456182697370, 9.810098007281305733176306061196

Graph of the $Z$-function along the critical line