L(s) = 1 | − 3-s + 9-s − 4.64·11-s − 13-s − 4.24·17-s − 6.24·19-s − 2.24·23-s − 27-s − 9.21·29-s + 9.28·31-s + 4.64·33-s − 7.28·37-s + 39-s − 5.67·41-s + 4.24·43-s − 2.88·47-s − 7·49-s + 4.24·51-s + 9.21·53-s + 6.24·57-s + 5.92·59-s + 0.969·61-s + 1.93·67-s + 2.24·69-s + 5.60·71-s + 12.5·73-s + 12.2·79-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.333·9-s − 1.39·11-s − 0.277·13-s − 1.03·17-s − 1.43·19-s − 0.469·23-s − 0.192·27-s − 1.71·29-s + 1.66·31-s + 0.807·33-s − 1.19·37-s + 0.160·39-s − 0.885·41-s + 0.648·43-s − 0.421·47-s − 49-s + 0.595·51-s + 1.26·53-s + 0.827·57-s + 0.770·59-s + 0.124·61-s + 0.236·67-s + 0.270·69-s + 0.665·71-s + 1.47·73-s + 1.37·79-s + ⋯ |
Λ(s)=(=(7800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6190038081 |
L(21) |
≈ |
0.6190038081 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1 |
| 13 | 1+T |
good | 7 | 1+7T2 |
| 11 | 1+4.64T+11T2 |
| 17 | 1+4.24T+17T2 |
| 19 | 1+6.24T+19T2 |
| 23 | 1+2.24T+23T2 |
| 29 | 1+9.21T+29T2 |
| 31 | 1−9.28T+31T2 |
| 37 | 1+7.28T+37T2 |
| 41 | 1+5.67T+41T2 |
| 43 | 1−4.24T+43T2 |
| 47 | 1+2.88T+47T2 |
| 53 | 1−9.21T+53T2 |
| 59 | 1−5.92T+59T2 |
| 61 | 1−0.969T+61T2 |
| 67 | 1−1.93T+67T2 |
| 71 | 1−5.60T+71T2 |
| 73 | 1−12.5T+73T2 |
| 79 | 1−12.2T+79T2 |
| 83 | 1−3.67T+83T2 |
| 89 | 1+9.67T+89T2 |
| 97 | 1−6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.006969271006219103153679067393, −6.96538411088603795364213743129, −6.57616106872550525270366432391, −5.68698586867143787130507874959, −5.10106057390892458554905689707, −4.43099735751405480050994468139, −3.63362864948348296696776105558, −2.47150415270460808491945962002, −1.93893175193214366695245804105, −0.37878694050747900260301198063,
0.37878694050747900260301198063, 1.93893175193214366695245804105, 2.47150415270460808491945962002, 3.63362864948348296696776105558, 4.43099735751405480050994468139, 5.10106057390892458554905689707, 5.68698586867143787130507874959, 6.57616106872550525270366432391, 6.96538411088603795364213743129, 8.006969271006219103153679067393