L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)5-s + 7-s − 1.00i·9-s + (−0.707 + 0.707i)11-s − 13-s + 1.00·15-s + (−0.707 + 0.707i)17-s + (0.707 − 0.707i)21-s + (−0.707 − 0.707i)23-s + 1.00i·25-s + (−0.707 − 0.707i)27-s − 1.41·29-s + (1 − i)31-s + 1.00i·33-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)5-s + 7-s − 1.00i·9-s + (−0.707 + 0.707i)11-s − 13-s + 1.00·15-s + (−0.707 + 0.707i)17-s + (0.707 − 0.707i)21-s + (−0.707 − 0.707i)23-s + 1.00i·25-s + (−0.707 − 0.707i)27-s − 1.41·29-s + (1 − i)31-s + 1.00i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 + 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 + 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.336135838\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.336135838\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 + T \) |
good | 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 17 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 + (-1 + i)T - iT^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 43 | \( 1 + (-1 + i)T - iT^{2} \) |
| 47 | \( 1 + 1.41iT - T^{2} \) |
| 53 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 97 | \( 1 + iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34344886163109503064682379237, −9.674827134823979536303051257747, −8.658724999010855754258454345916, −7.78113779872982913787050690890, −7.19442947925607431341428353887, −6.24673308088798553496095624675, −5.17307789491501927818164143657, −3.96855625299123681893200329407, −2.38867478010405634551590184135, −2.02551986146899686750955544320,
1.87372940005070565694114541896, 2.88356162613494154554633034088, 4.39370048353639550006892322179, 5.02560723417937718690261809330, 5.80410351093157961574027623442, 7.44714941444174325819122147512, 8.085101980025009619956645776904, 8.988843737431236406135767376007, 9.513241373644548206312045831029, 10.47379480176644816793406296012