L(s) = 1 | + (0.258 − 0.448i)2-s + (0.5 + 0.866i)3-s + (0.366 + 0.633i)4-s + (−0.707 + 1.22i)5-s + 0.517·6-s − i·7-s + 0.896·8-s + (−0.499 + 0.866i)9-s + (0.366 + 0.633i)10-s + (−0.366 + 0.633i)12-s + (−0.448 − 0.258i)14-s − 1.41·15-s + (−0.133 + 0.232i)16-s + (−0.965 − 1.67i)17-s + (0.258 + 0.448i)18-s + ⋯ |
L(s) = 1 | + (0.258 − 0.448i)2-s + (0.5 + 0.866i)3-s + (0.366 + 0.633i)4-s + (−0.707 + 1.22i)5-s + 0.517·6-s − i·7-s + 0.896·8-s + (−0.499 + 0.866i)9-s + (0.366 + 0.633i)10-s + (−0.366 + 0.633i)12-s + (−0.448 − 0.258i)14-s − 1.41·15-s + (−0.133 + 0.232i)16-s + (−0.965 − 1.67i)17-s + (0.258 + 0.448i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 - 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 - 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.253891678\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.253891678\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + iT \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.258 + 0.448i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.965 + 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.258 - 0.448i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - 1.93T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69125817450908597747122306117, −10.17983395733295444928740456673, −9.042834495357797784557216094931, −7.897558273702863549087789413698, −7.35287055426919134139449222551, −6.60786926126503001800078379752, −4.75485280971330933914854571202, −4.06018783857072221558492935730, −3.18859951709655591509421011586, −2.52945613370736458552621321082,
1.33327395190103559994330426460, 2.47623018926985748667482892209, 4.13984381737386359188479823955, 5.08602977340909211079185199943, 6.15016292497083434073664112052, 6.67611173140684066525039000659, 8.068155912710281049042149338856, 8.361242066513964661430764522362, 9.168990318881946110108840436478, 10.33508626705359493601586219272