| L(s) = 1 | + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s − i·5-s + (0.5 − 0.866i)7-s + (0.499 + 0.866i)9-s + (−0.866 + 0.5i)11-s + (0.866 − 0.499i)12-s + (−0.5 − 0.866i)13-s + (−0.5 + 0.866i)15-s + (−0.499 − 0.866i)16-s − i·17-s − 19-s + (0.866 + 0.5i)20-s + (−0.866 + 0.499i)21-s + (0.866 + 0.5i)23-s + ⋯ |
| L(s) = 1 | + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s − i·5-s + (0.5 − 0.866i)7-s + (0.499 + 0.866i)9-s + (−0.866 + 0.5i)11-s + (0.866 − 0.499i)12-s + (−0.5 − 0.866i)13-s + (−0.5 + 0.866i)15-s + (−0.499 − 0.866i)16-s − i·17-s − 19-s + (0.866 + 0.5i)20-s + (−0.866 + 0.499i)21-s + (0.866 + 0.5i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5212103460\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5212103460\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + iT - T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + 2iT - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - iT - T^{2} \) |
| 59 | \( 1 - iT - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32350060443496011614396793480, −9.422653236002718638508526340619, −8.276350762472382693616548213267, −7.65916190360366941571963535474, −7.10745389099363132507787314084, −5.54300565071603911879697092825, −4.83444524397548115425220583358, −4.19627026295205843633634145217, −2.43812497263658536847180219670, −0.61152011865866723172846053284,
1.90406015610176458783964682047, 3.43406445621850261466993595025, 4.84708022364226399795578856375, 5.27528959259234390773992176214, 6.35959014456049004219378487943, 6.89666473506290891195693442860, 8.545894871839929071345839173816, 9.074533275919605798054004625665, 10.35759526148298239601359949387, 10.60850091979478773460287061062