L(s) = 1 | + (−0.258 − 0.448i)2-s + (0.5 − 0.866i)3-s + (0.366 − 0.633i)4-s + (0.707 + 1.22i)5-s − 0.517·6-s + i·7-s − 0.896·8-s + (−0.499 − 0.866i)9-s + (0.366 − 0.633i)10-s + (−0.366 − 0.633i)12-s + (0.448 − 0.258i)14-s + 1.41·15-s + (−0.133 − 0.232i)16-s + (0.965 − 1.67i)17-s + (−0.258 + 0.448i)18-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.448i)2-s + (0.5 − 0.866i)3-s + (0.366 − 0.633i)4-s + (0.707 + 1.22i)5-s − 0.517·6-s + i·7-s − 0.896·8-s + (−0.499 − 0.866i)9-s + (0.366 − 0.633i)10-s + (−0.366 − 0.633i)12-s + (0.448 − 0.258i)14-s + 1.41·15-s + (−0.133 − 0.232i)16-s + (0.965 − 1.67i)17-s + (−0.258 + 0.448i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.151751517\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.151751517\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 - iT \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.258 + 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.258 - 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + 1.93T + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.965 + 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23051374296254135981624712985, −9.522966512771393580667117193787, −8.985797390873497029928912118020, −7.58788551578528918383432992947, −6.93271988197264275685914102626, −5.99378866583049362706151606247, −5.46773350018097362930187931929, −3.09679861644815985032244113050, −2.65350285903769048087913627467, −1.62370348046287984118941443287,
1.84121994387762301705116869059, 3.45122228172257330842942114464, 4.18248824110264974680658366725, 5.34198284131863176656115781776, 6.20443898675374747525096835912, 7.58491781773569458702825785501, 8.113945034163862006341723006323, 8.980110500624422948341358206999, 9.574952104863658833803673971764, 10.49649093462412030150708824970