Properties

Label 2-7742-1.1-c1-0-131
Degree $2$
Conductor $7742$
Sign $-1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 1.14·3-s + 4-s − 0.568·5-s + 1.14·6-s − 8-s − 1.68·9-s + 0.568·10-s + 0.961·11-s − 1.14·12-s + 2.99·13-s + 0.650·15-s + 16-s − 4.71·17-s + 1.68·18-s − 3.44·19-s − 0.568·20-s − 0.961·22-s + 6.53·23-s + 1.14·24-s − 4.67·25-s − 2.99·26-s + 5.37·27-s + 0.291·29-s − 0.650·30-s − 2.50·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.661·3-s + 0.5·4-s − 0.254·5-s + 0.467·6-s − 0.353·8-s − 0.562·9-s + 0.179·10-s + 0.289·11-s − 0.330·12-s + 0.831·13-s + 0.168·15-s + 0.250·16-s − 1.14·17-s + 0.397·18-s − 0.790·19-s − 0.127·20-s − 0.205·22-s + 1.36·23-s + 0.233·24-s − 0.935·25-s − 0.587·26-s + 1.03·27-s + 0.0542·29-s − 0.118·30-s − 0.449·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + 1.14T + 3T^{2} \)
5 \( 1 + 0.568T + 5T^{2} \)
11 \( 1 - 0.961T + 11T^{2} \)
13 \( 1 - 2.99T + 13T^{2} \)
17 \( 1 + 4.71T + 17T^{2} \)
19 \( 1 + 3.44T + 19T^{2} \)
23 \( 1 - 6.53T + 23T^{2} \)
29 \( 1 - 0.291T + 29T^{2} \)
31 \( 1 + 2.50T + 31T^{2} \)
37 \( 1 - 9.14T + 37T^{2} \)
41 \( 1 - 1.92T + 41T^{2} \)
43 \( 1 + 1.61T + 43T^{2} \)
47 \( 1 + 2.16T + 47T^{2} \)
53 \( 1 - 0.270T + 53T^{2} \)
59 \( 1 + 1.11T + 59T^{2} \)
61 \( 1 + 1.92T + 61T^{2} \)
67 \( 1 + 7.13T + 67T^{2} \)
71 \( 1 - 4.20T + 71T^{2} \)
73 \( 1 - 1.41T + 73T^{2} \)
83 \( 1 - 3.34T + 83T^{2} \)
89 \( 1 - 11.9T + 89T^{2} \)
97 \( 1 - 10.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61276763122296787972759384114, −6.64244099970729882244844149028, −6.34622309831612678043427098089, −5.60921181455239849539234669747, −4.72295530637618256477707707515, −3.94549081399570385180773201052, −2.99593632357905173661865869202, −2.10202708274896386654759128057, −0.999879008803337345139322158273, 0, 0.999879008803337345139322158273, 2.10202708274896386654759128057, 2.99593632357905173661865869202, 3.94549081399570385180773201052, 4.72295530637618256477707707515, 5.60921181455239849539234669747, 6.34622309831612678043427098089, 6.64244099970729882244844149028, 7.61276763122296787972759384114

Graph of the $Z$-function along the critical line