Properties

Label 2-7742-1.1-c1-0-12
Degree $2$
Conductor $7742$
Sign $1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 1.91·3-s + 4-s − 4.19·5-s + 1.91·6-s − 8-s + 0.658·9-s + 4.19·10-s − 1.42·11-s − 1.91·12-s + 2.65·13-s + 8.01·15-s + 16-s − 1.68·17-s − 0.658·18-s − 0.426·19-s − 4.19·20-s + 1.42·22-s − 4.21·23-s + 1.91·24-s + 12.5·25-s − 2.65·26-s + 4.47·27-s + 7.40·29-s − 8.01·30-s − 9.93·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.10·3-s + 0.5·4-s − 1.87·5-s + 0.780·6-s − 0.353·8-s + 0.219·9-s + 1.32·10-s − 0.430·11-s − 0.552·12-s + 0.735·13-s + 2.06·15-s + 0.250·16-s − 0.407·17-s − 0.155·18-s − 0.0978·19-s − 0.937·20-s + 0.304·22-s − 0.879·23-s + 0.390·24-s + 2.51·25-s − 0.520·26-s + 0.861·27-s + 1.37·29-s − 1.46·30-s − 1.78·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1727399346\)
\(L(\frac12)\) \(\approx\) \(0.1727399346\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + 1.91T + 3T^{2} \)
5 \( 1 + 4.19T + 5T^{2} \)
11 \( 1 + 1.42T + 11T^{2} \)
13 \( 1 - 2.65T + 13T^{2} \)
17 \( 1 + 1.68T + 17T^{2} \)
19 \( 1 + 0.426T + 19T^{2} \)
23 \( 1 + 4.21T + 23T^{2} \)
29 \( 1 - 7.40T + 29T^{2} \)
31 \( 1 + 9.93T + 31T^{2} \)
37 \( 1 - 11.2T + 37T^{2} \)
41 \( 1 - 0.791T + 41T^{2} \)
43 \( 1 + 1.07T + 43T^{2} \)
47 \( 1 + 11.2T + 47T^{2} \)
53 \( 1 + 8.59T + 53T^{2} \)
59 \( 1 - 5.18T + 59T^{2} \)
61 \( 1 + 13.1T + 61T^{2} \)
67 \( 1 - 1.70T + 67T^{2} \)
71 \( 1 + 11.2T + 71T^{2} \)
73 \( 1 - 0.426T + 73T^{2} \)
83 \( 1 + 13.8T + 83T^{2} \)
89 \( 1 - 16.0T + 89T^{2} \)
97 \( 1 - 9.57T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87964295841255121496838886959, −7.31739336865717429710629862855, −6.47437271594144697003145386227, −6.02940269582048452651981901111, −4.97927685176430751057578611598, −4.38777318893342171685651331284, −3.55802549294354702367675848137, −2.75484115986771037084986267071, −1.30714941844917299913623271362, −0.26712498468233387940158984078, 0.26712498468233387940158984078, 1.30714941844917299913623271362, 2.75484115986771037084986267071, 3.55802549294354702367675848137, 4.38777318893342171685651331284, 4.97927685176430751057578611598, 6.02940269582048452651981901111, 6.47437271594144697003145386227, 7.31739336865717429710629862855, 7.87964295841255121496838886959

Graph of the $Z$-function along the critical line