Properties

Label 2-7742-1.1-c1-0-104
Degree $2$
Conductor $7742$
Sign $-1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2.45·3-s + 4-s − 3.68·5-s − 2.45·6-s + 8-s + 3.01·9-s − 3.68·10-s − 6.14·11-s − 2.45·12-s − 1.79·13-s + 9.03·15-s + 16-s + 2.08·17-s + 3.01·18-s + 3.98·19-s − 3.68·20-s − 6.14·22-s + 6.96·23-s − 2.45·24-s + 8.59·25-s − 1.79·26-s − 0.0257·27-s − 8.33·29-s + 9.03·30-s − 7.88·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.41·3-s + 0.5·4-s − 1.64·5-s − 1.00·6-s + 0.353·8-s + 1.00·9-s − 1.16·10-s − 1.85·11-s − 0.707·12-s − 0.497·13-s + 2.33·15-s + 0.250·16-s + 0.504·17-s + 0.709·18-s + 0.914·19-s − 0.824·20-s − 1.31·22-s + 1.45·23-s − 0.500·24-s + 1.71·25-s − 0.351·26-s − 0.00495·27-s − 1.54·29-s + 1.65·30-s − 1.41·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + 2.45T + 3T^{2} \)
5 \( 1 + 3.68T + 5T^{2} \)
11 \( 1 + 6.14T + 11T^{2} \)
13 \( 1 + 1.79T + 13T^{2} \)
17 \( 1 - 2.08T + 17T^{2} \)
19 \( 1 - 3.98T + 19T^{2} \)
23 \( 1 - 6.96T + 23T^{2} \)
29 \( 1 + 8.33T + 29T^{2} \)
31 \( 1 + 7.88T + 31T^{2} \)
37 \( 1 - 2.85T + 37T^{2} \)
41 \( 1 - 2.31T + 41T^{2} \)
43 \( 1 + 6.63T + 43T^{2} \)
47 \( 1 - 11.4T + 47T^{2} \)
53 \( 1 - 13.9T + 53T^{2} \)
59 \( 1 - 9.62T + 59T^{2} \)
61 \( 1 + 4.30T + 61T^{2} \)
67 \( 1 - 0.480T + 67T^{2} \)
71 \( 1 + 2.40T + 71T^{2} \)
73 \( 1 - 9.45T + 73T^{2} \)
83 \( 1 + 2.97T + 83T^{2} \)
89 \( 1 - 11.4T + 89T^{2} \)
97 \( 1 + 5.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.28745635270481376309425753785, −7.06984761046187135240646074907, −5.74792307987324244001743919219, −5.31153383710796334422546463060, −4.95575994713310566204293093549, −4.03513752269030206967900701730, −3.33465003939997517142904555664, −2.48409391252027099428427775717, −0.876479679807656091175189459637, 0, 0.876479679807656091175189459637, 2.48409391252027099428427775717, 3.33465003939997517142904555664, 4.03513752269030206967900701730, 4.95575994713310566204293093549, 5.31153383710796334422546463060, 5.74792307987324244001743919219, 7.06984761046187135240646074907, 7.28745635270481376309425753785

Graph of the $Z$-function along the critical line