Properties

Label 2-7742-1.1-c1-0-1
Degree $2$
Conductor $7742$
Sign $1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 0.764·3-s + 4-s − 1.75·5-s − 0.764·6-s − 8-s − 2.41·9-s + 1.75·10-s − 6.17·11-s + 0.764·12-s − 4.95·13-s − 1.34·15-s + 16-s − 0.151·17-s + 2.41·18-s − 6.10·19-s − 1.75·20-s + 6.17·22-s + 7.24·23-s − 0.764·24-s − 1.90·25-s + 4.95·26-s − 4.14·27-s − 8.89·29-s + 1.34·30-s − 7.29·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.441·3-s + 0.5·4-s − 0.786·5-s − 0.312·6-s − 0.353·8-s − 0.805·9-s + 0.556·10-s − 1.86·11-s + 0.220·12-s − 1.37·13-s − 0.347·15-s + 0.250·16-s − 0.0368·17-s + 0.569·18-s − 1.40·19-s − 0.393·20-s + 1.31·22-s + 1.51·23-s − 0.156·24-s − 0.381·25-s + 0.971·26-s − 0.796·27-s − 1.65·29-s + 0.245·30-s − 1.31·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.03703784223\)
\(L(\frac12)\) \(\approx\) \(0.03703784223\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 - 0.764T + 3T^{2} \)
5 \( 1 + 1.75T + 5T^{2} \)
11 \( 1 + 6.17T + 11T^{2} \)
13 \( 1 + 4.95T + 13T^{2} \)
17 \( 1 + 0.151T + 17T^{2} \)
19 \( 1 + 6.10T + 19T^{2} \)
23 \( 1 - 7.24T + 23T^{2} \)
29 \( 1 + 8.89T + 29T^{2} \)
31 \( 1 + 7.29T + 31T^{2} \)
37 \( 1 - 7.68T + 37T^{2} \)
41 \( 1 - 2.95T + 41T^{2} \)
43 \( 1 + 3.06T + 43T^{2} \)
47 \( 1 + 7.52T + 47T^{2} \)
53 \( 1 + 6.54T + 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 - 6.61T + 61T^{2} \)
67 \( 1 - 4.52T + 67T^{2} \)
71 \( 1 - 11.0T + 71T^{2} \)
73 \( 1 + 4.72T + 73T^{2} \)
83 \( 1 + 15.2T + 83T^{2} \)
89 \( 1 - 1.27T + 89T^{2} \)
97 \( 1 + 9.57T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.950927492450514690794795024164, −7.47412186588234826606017554740, −6.79108255787384990002423235004, −5.67539929330416374228580116236, −5.17360286526773653098989671643, −4.26723374988508787890227356373, −3.22455248446108894096058124030, −2.62863260648976109787450797797, −1.96350953982310482708620748691, −0.094808776643860602047132880038, 0.094808776643860602047132880038, 1.96350953982310482708620748691, 2.62863260648976109787450797797, 3.22455248446108894096058124030, 4.26723374988508787890227356373, 5.17360286526773653098989671643, 5.67539929330416374228580116236, 6.79108255787384990002423235004, 7.47412186588234826606017554740, 7.950927492450514690794795024164

Graph of the $Z$-function along the critical line