Properties

Label 2-770-1.1-c1-0-16
Degree $2$
Conductor $770$
Sign $1$
Analytic cond. $6.14848$
Root an. cond. $2.47961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2.73·3-s + 4-s − 5-s + 2.73·6-s + 7-s + 8-s + 4.46·9-s − 10-s + 11-s + 2.73·12-s − 1.46·13-s + 14-s − 2.73·15-s + 16-s − 3.46·17-s + 4.46·18-s + 6.73·19-s − 20-s + 2.73·21-s + 22-s − 8.19·23-s + 2.73·24-s + 25-s − 1.46·26-s + 3.99·27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.57·3-s + 0.5·4-s − 0.447·5-s + 1.11·6-s + 0.377·7-s + 0.353·8-s + 1.48·9-s − 0.316·10-s + 0.301·11-s + 0.788·12-s − 0.406·13-s + 0.267·14-s − 0.705·15-s + 0.250·16-s − 0.840·17-s + 1.05·18-s + 1.54·19-s − 0.223·20-s + 0.596·21-s + 0.213·22-s − 1.70·23-s + 0.557·24-s + 0.200·25-s − 0.287·26-s + 0.769·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(770\)    =    \(2 \cdot 5 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(6.14848\)
Root analytic conductor: \(2.47961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{770} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 770,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.708064299\)
\(L(\frac12)\) \(\approx\) \(3.708064299\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 - T \)
good3 \( 1 - 2.73T + 3T^{2} \)
13 \( 1 + 1.46T + 13T^{2} \)
17 \( 1 + 3.46T + 17T^{2} \)
19 \( 1 - 6.73T + 19T^{2} \)
23 \( 1 + 8.19T + 23T^{2} \)
29 \( 1 + 4.73T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 - 0.732T + 37T^{2} \)
41 \( 1 + 2.19T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 - 6.92T + 47T^{2} \)
53 \( 1 + 7.26T + 53T^{2} \)
59 \( 1 - 6.92T + 59T^{2} \)
61 \( 1 + 4.92T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 9.46T + 71T^{2} \)
73 \( 1 + 14.3T + 73T^{2} \)
79 \( 1 + 12.1T + 79T^{2} \)
83 \( 1 + 16.3T + 83T^{2} \)
89 \( 1 - 3.46T + 89T^{2} \)
97 \( 1 - 14.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16167403371029127339351710978, −9.378742497597221777073898978450, −8.503728533760204229827943501528, −7.69693598577128386953603209124, −7.15478314043648595030224249719, −5.80944923657199947454339965962, −4.53189308867694419899875178382, −3.79572434179813886888611896621, −2.84968810203567060751966738274, −1.80780264682836959243522545997, 1.80780264682836959243522545997, 2.84968810203567060751966738274, 3.79572434179813886888611896621, 4.53189308867694419899875178382, 5.80944923657199947454339965962, 7.15478314043648595030224249719, 7.69693598577128386953603209124, 8.503728533760204229827943501528, 9.378742497597221777073898978450, 10.16167403371029127339351710978

Graph of the $Z$-function along the critical line