L(s) = 1 | − 5.05·2-s − 9.64·3-s + 17.5·4-s + 12.9·5-s + 48.7·6-s − 7·7-s − 48.4·8-s + 66.0·9-s − 65.4·10-s + 11·11-s − 169.·12-s − 55.5·13-s + 35.3·14-s − 124.·15-s + 104.·16-s + 59.2·17-s − 333.·18-s − 33.1·19-s + 227.·20-s + 67.5·21-s − 55.6·22-s + 26.0·23-s + 466.·24-s + 42.5·25-s + 280.·26-s − 376.·27-s − 123.·28-s + ⋯ |
L(s) = 1 | − 1.78·2-s − 1.85·3-s + 2.19·4-s + 1.15·5-s + 3.31·6-s − 0.377·7-s − 2.13·8-s + 2.44·9-s − 2.06·10-s + 0.301·11-s − 4.07·12-s − 1.18·13-s + 0.675·14-s − 2.14·15-s + 1.62·16-s + 0.845·17-s − 4.37·18-s − 0.400·19-s + 2.54·20-s + 0.701·21-s − 0.539·22-s + 0.236·23-s + 3.97·24-s + 0.340·25-s + 2.11·26-s − 2.68·27-s − 0.830·28-s + ⋯ |
Λ(s)=(=(77s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(77s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+7T |
| 11 | 1−11T |
good | 2 | 1+5.05T+8T2 |
| 3 | 1+9.64T+27T2 |
| 5 | 1−12.9T+125T2 |
| 13 | 1+55.5T+2.19e3T2 |
| 17 | 1−59.2T+4.91e3T2 |
| 19 | 1+33.1T+6.85e3T2 |
| 23 | 1−26.0T+1.21e4T2 |
| 29 | 1+188.T+2.43e4T2 |
| 31 | 1+278.T+2.97e4T2 |
| 37 | 1−201.T+5.06e4T2 |
| 41 | 1+126.T+6.89e4T2 |
| 43 | 1+454.T+7.95e4T2 |
| 47 | 1+129.T+1.03e5T2 |
| 53 | 1−79.8T+1.48e5T2 |
| 59 | 1+593.T+2.05e5T2 |
| 61 | 1+49.8T+2.26e5T2 |
| 67 | 1−295.T+3.00e5T2 |
| 71 | 1−546.T+3.57e5T2 |
| 73 | 1+809.T+3.89e5T2 |
| 79 | 1+375.T+4.93e5T2 |
| 83 | 1−85.9T+5.71e5T2 |
| 89 | 1−750.T+7.04e5T2 |
| 97 | 1+451.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.92637504752637039576106597423, −11.88337491923734153914492227989, −10.88071735527003557479835441964, −9.967921623863442184276883178611, −9.453554465884656392953467879988, −7.41000213023357838781104720931, −6.44833032670455203553731329261, −5.42217514794295291291569259983, −1.67315106252138622706386683089, 0,
1.67315106252138622706386683089, 5.42217514794295291291569259983, 6.44833032670455203553731329261, 7.41000213023357838781104720931, 9.453554465884656392953467879988, 9.967921623863442184276883178611, 10.88071735527003557479835441964, 11.88337491923734153914492227989, 12.92637504752637039576106597423