Properties

Label 2-77-1.1-c3-0-5
Degree $2$
Conductor $77$
Sign $-1$
Analytic cond. $4.54314$
Root an. cond. $2.13146$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.05·2-s − 9.64·3-s + 17.5·4-s + 12.9·5-s + 48.7·6-s − 7·7-s − 48.4·8-s + 66.0·9-s − 65.4·10-s + 11·11-s − 169.·12-s − 55.5·13-s + 35.3·14-s − 124.·15-s + 104.·16-s + 59.2·17-s − 333.·18-s − 33.1·19-s + 227.·20-s + 67.5·21-s − 55.6·22-s + 26.0·23-s + 466.·24-s + 42.5·25-s + 280.·26-s − 376.·27-s − 123.·28-s + ⋯
L(s)  = 1  − 1.78·2-s − 1.85·3-s + 2.19·4-s + 1.15·5-s + 3.31·6-s − 0.377·7-s − 2.13·8-s + 2.44·9-s − 2.06·10-s + 0.301·11-s − 4.07·12-s − 1.18·13-s + 0.675·14-s − 2.14·15-s + 1.62·16-s + 0.845·17-s − 4.37·18-s − 0.400·19-s + 2.54·20-s + 0.701·21-s − 0.539·22-s + 0.236·23-s + 3.97·24-s + 0.340·25-s + 2.11·26-s − 2.68·27-s − 0.830·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(77\)    =    \(7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(4.54314\)
Root analytic conductor: \(2.13146\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 77,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 7T \)
11 \( 1 - 11T \)
good2 \( 1 + 5.05T + 8T^{2} \)
3 \( 1 + 9.64T + 27T^{2} \)
5 \( 1 - 12.9T + 125T^{2} \)
13 \( 1 + 55.5T + 2.19e3T^{2} \)
17 \( 1 - 59.2T + 4.91e3T^{2} \)
19 \( 1 + 33.1T + 6.85e3T^{2} \)
23 \( 1 - 26.0T + 1.21e4T^{2} \)
29 \( 1 + 188.T + 2.43e4T^{2} \)
31 \( 1 + 278.T + 2.97e4T^{2} \)
37 \( 1 - 201.T + 5.06e4T^{2} \)
41 \( 1 + 126.T + 6.89e4T^{2} \)
43 \( 1 + 454.T + 7.95e4T^{2} \)
47 \( 1 + 129.T + 1.03e5T^{2} \)
53 \( 1 - 79.8T + 1.48e5T^{2} \)
59 \( 1 + 593.T + 2.05e5T^{2} \)
61 \( 1 + 49.8T + 2.26e5T^{2} \)
67 \( 1 - 295.T + 3.00e5T^{2} \)
71 \( 1 - 546.T + 3.57e5T^{2} \)
73 \( 1 + 809.T + 3.89e5T^{2} \)
79 \( 1 + 375.T + 4.93e5T^{2} \)
83 \( 1 - 85.9T + 5.71e5T^{2} \)
89 \( 1 - 750.T + 7.04e5T^{2} \)
97 \( 1 + 451.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92637504752637039576106597423, −11.88337491923734153914492227989, −10.88071735527003557479835441964, −9.967921623863442184276883178611, −9.453554465884656392953467879988, −7.41000213023357838781104720931, −6.44833032670455203553731329261, −5.42217514794295291291569259983, −1.67315106252138622706386683089, 0, 1.67315106252138622706386683089, 5.42217514794295291291569259983, 6.44833032670455203553731329261, 7.41000213023357838781104720931, 9.453554465884656392953467879988, 9.967921623863442184276883178611, 10.88071735527003557479835441964, 11.88337491923734153914492227989, 12.92637504752637039576106597423

Graph of the $Z$-function along the critical line