L(s) = 1 | + 3.76·2-s − 7.36·3-s + 6.16·4-s − 15.4·5-s − 27.7·6-s − 7·7-s − 6.90·8-s + 27.2·9-s − 58.3·10-s + 11·11-s − 45.3·12-s + 49.0·13-s − 26.3·14-s + 114.·15-s − 75.3·16-s − 34.1·17-s + 102.·18-s − 144.·19-s − 95.5·20-s + 51.5·21-s + 41.4·22-s + 118.·23-s + 50.8·24-s + 115.·25-s + 184.·26-s − 1.63·27-s − 43.1·28-s + ⋯ |
L(s) = 1 | + 1.33·2-s − 1.41·3-s + 0.770·4-s − 1.38·5-s − 1.88·6-s − 0.377·7-s − 0.305·8-s + 1.00·9-s − 1.84·10-s + 0.301·11-s − 1.09·12-s + 1.04·13-s − 0.502·14-s + 1.96·15-s − 1.17·16-s − 0.486·17-s + 1.34·18-s − 1.74·19-s − 1.06·20-s + 0.535·21-s + 0.401·22-s + 1.07·23-s + 0.432·24-s + 0.920·25-s + 1.39·26-s − 0.0116·27-s − 0.291·28-s + ⋯ |
Λ(s)=(=(77s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(77s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+7T |
| 11 | 1−11T |
good | 2 | 1−3.76T+8T2 |
| 3 | 1+7.36T+27T2 |
| 5 | 1+15.4T+125T2 |
| 13 | 1−49.0T+2.19e3T2 |
| 17 | 1+34.1T+4.91e3T2 |
| 19 | 1+144.T+6.85e3T2 |
| 23 | 1−118.T+1.21e4T2 |
| 29 | 1+63.6T+2.43e4T2 |
| 31 | 1+212.T+2.97e4T2 |
| 37 | 1+200.T+5.06e4T2 |
| 41 | 1−451.T+6.89e4T2 |
| 43 | 1+130.T+7.95e4T2 |
| 47 | 1+176.T+1.03e5T2 |
| 53 | 1+629.T+1.48e5T2 |
| 59 | 1+86.9T+2.05e5T2 |
| 61 | 1−644.T+2.26e5T2 |
| 67 | 1+400.T+3.00e5T2 |
| 71 | 1−507.T+3.57e5T2 |
| 73 | 1−176.T+3.89e5T2 |
| 79 | 1+701.T+4.93e5T2 |
| 83 | 1+1.25e3T+5.71e5T2 |
| 89 | 1−788.T+7.04e5T2 |
| 97 | 1−185.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.98290294102715277677537190096, −12.50885535221936243262932407851, −11.31106202974706013077606134142, −11.00490809111876813323187937030, −8.758606309476125421947229676998, −6.89947703437141300004680603572, −5.98983998150940296546754602579, −4.63810192447921754194094079760, −3.67358803512856225534933034657, 0,
3.67358803512856225534933034657, 4.63810192447921754194094079760, 5.98983998150940296546754602579, 6.89947703437141300004680603572, 8.758606309476125421947229676998, 11.00490809111876813323187937030, 11.31106202974706013077606134142, 12.50885535221936243262932407851, 12.98290294102715277677537190096