Properties

Label 2-77-1.1-c3-0-15
Degree $2$
Conductor $77$
Sign $-1$
Analytic cond. $4.54314$
Root an. cond. $2.13146$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.76·2-s − 7.36·3-s + 6.16·4-s − 15.4·5-s − 27.7·6-s − 7·7-s − 6.90·8-s + 27.2·9-s − 58.3·10-s + 11·11-s − 45.3·12-s + 49.0·13-s − 26.3·14-s + 114.·15-s − 75.3·16-s − 34.1·17-s + 102.·18-s − 144.·19-s − 95.5·20-s + 51.5·21-s + 41.4·22-s + 118.·23-s + 50.8·24-s + 115.·25-s + 184.·26-s − 1.63·27-s − 43.1·28-s + ⋯
L(s)  = 1  + 1.33·2-s − 1.41·3-s + 0.770·4-s − 1.38·5-s − 1.88·6-s − 0.377·7-s − 0.305·8-s + 1.00·9-s − 1.84·10-s + 0.301·11-s − 1.09·12-s + 1.04·13-s − 0.502·14-s + 1.96·15-s − 1.17·16-s − 0.486·17-s + 1.34·18-s − 1.74·19-s − 1.06·20-s + 0.535·21-s + 0.401·22-s + 1.07·23-s + 0.432·24-s + 0.920·25-s + 1.39·26-s − 0.0116·27-s − 0.291·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(77\)    =    \(7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(4.54314\)
Root analytic conductor: \(2.13146\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 77,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 7T \)
11 \( 1 - 11T \)
good2 \( 1 - 3.76T + 8T^{2} \)
3 \( 1 + 7.36T + 27T^{2} \)
5 \( 1 + 15.4T + 125T^{2} \)
13 \( 1 - 49.0T + 2.19e3T^{2} \)
17 \( 1 + 34.1T + 4.91e3T^{2} \)
19 \( 1 + 144.T + 6.85e3T^{2} \)
23 \( 1 - 118.T + 1.21e4T^{2} \)
29 \( 1 + 63.6T + 2.43e4T^{2} \)
31 \( 1 + 212.T + 2.97e4T^{2} \)
37 \( 1 + 200.T + 5.06e4T^{2} \)
41 \( 1 - 451.T + 6.89e4T^{2} \)
43 \( 1 + 130.T + 7.95e4T^{2} \)
47 \( 1 + 176.T + 1.03e5T^{2} \)
53 \( 1 + 629.T + 1.48e5T^{2} \)
59 \( 1 + 86.9T + 2.05e5T^{2} \)
61 \( 1 - 644.T + 2.26e5T^{2} \)
67 \( 1 + 400.T + 3.00e5T^{2} \)
71 \( 1 - 507.T + 3.57e5T^{2} \)
73 \( 1 - 176.T + 3.89e5T^{2} \)
79 \( 1 + 701.T + 4.93e5T^{2} \)
83 \( 1 + 1.25e3T + 5.71e5T^{2} \)
89 \( 1 - 788.T + 7.04e5T^{2} \)
97 \( 1 - 185.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.98290294102715277677537190096, −12.50885535221936243262932407851, −11.31106202974706013077606134142, −11.00490809111876813323187937030, −8.758606309476125421947229676998, −6.89947703437141300004680603572, −5.98983998150940296546754602579, −4.63810192447921754194094079760, −3.67358803512856225534933034657, 0, 3.67358803512856225534933034657, 4.63810192447921754194094079760, 5.98983998150940296546754602579, 6.89947703437141300004680603572, 8.758606309476125421947229676998, 11.00490809111876813323187937030, 11.31106202974706013077606134142, 12.50885535221936243262932407851, 12.98290294102715277677537190096

Graph of the $Z$-function along the critical line