L(s) = 1 | − i·3-s + 2i·5-s − 9-s − 4i·11-s − 2i·13-s + 2·15-s + 2·17-s − 4i·19-s + 8·23-s + 25-s + i·27-s + 6i·29-s + 8·31-s − 4·33-s − 6i·37-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 0.894i·5-s − 0.333·9-s − 1.20i·11-s − 0.554i·13-s + 0.516·15-s + 0.485·17-s − 0.917i·19-s + 1.66·23-s + 0.200·25-s + 0.192i·27-s + 1.11i·29-s + 1.43·31-s − 0.696·33-s − 0.986i·37-s + ⋯ |
Λ(s)=(=(768s/2ΓC(s)L(s)(0.707+0.707i)Λ(2−s)
Λ(s)=(=(768s/2ΓC(s+1/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
768
= 28⋅3
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
6.13251 |
Root analytic conductor: |
2.47639 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ768(385,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 768, ( :1/2), 0.707+0.707i)
|
Particular Values
L(1) |
≈ |
1.40881−0.583548i |
L(21) |
≈ |
1.40881−0.583548i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
good | 5 | 1−2iT−5T2 |
| 7 | 1+7T2 |
| 11 | 1+4iT−11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1−2T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1−8T+23T2 |
| 29 | 1−6iT−29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1+6iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+47T2 |
| 53 | 1−2iT−53T2 |
| 59 | 1+4iT−59T2 |
| 61 | 1+2iT−61T2 |
| 67 | 1+4iT−67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+10T+73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53678054538526819429902130252, −9.221881939788189024996817046142, −8.488160237866709217936228452879, −7.48771610208422705976173381661, −6.79040057983196740369841487635, −5.94958079517156289184029044613, −4.95170658338410290830759369963, −3.29429813718658719386393794195, −2.75410683407352004343693392806, −0.912968318039718484977089011385,
1.34453381360352526103933658464, 2.89013753384545291997686266012, 4.34684880364153666893216696261, 4.76249930341247046819410826981, 5.87174871793317313828757853650, 6.98073821428419389803845495304, 8.009929251330985480190217384238, 8.819304113030716990485867333560, 9.677381846222648336617337407700, 10.14143597954171516893615931924