Properties

Label 2-768-256.165-c1-0-17
Degree $2$
Conductor $768$
Sign $0.344 + 0.938i$
Analytic cond. $6.13251$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.15 − 0.816i)2-s + (−0.857 − 0.514i)3-s + (0.665 + 1.88i)4-s + (−3.82 + 1.36i)5-s + (0.570 + 1.29i)6-s + (−4.41 + 1.34i)7-s + (0.771 − 2.72i)8-s + (0.471 + 0.881i)9-s + (5.52 + 1.54i)10-s + (1.56 − 2.10i)11-s + (0.398 − 1.95i)12-s + (−4.03 + 1.90i)13-s + (6.19 + 2.06i)14-s + (3.98 + 0.791i)15-s + (−3.11 + 2.51i)16-s + (−5.01 + 0.998i)17-s + ⋯
L(s)  = 1  + (−0.816 − 0.577i)2-s + (−0.495 − 0.296i)3-s + (0.332 + 0.942i)4-s + (−1.70 + 0.611i)5-s + (0.232 + 0.528i)6-s + (−1.66 + 0.506i)7-s + (0.272 − 0.962i)8-s + (0.157 + 0.293i)9-s + (1.74 + 0.487i)10-s + (0.471 − 0.635i)11-s + (0.115 − 0.565i)12-s + (−1.11 + 0.529i)13-s + (1.65 + 0.550i)14-s + (1.02 + 0.204i)15-s + (−0.778 + 0.627i)16-s + (−1.21 + 0.242i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.344 + 0.938i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.344 + 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $0.344 + 0.938i$
Analytic conductor: \(6.13251\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{768} (421, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :1/2),\ 0.344 + 0.938i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.134352 - 0.0938456i\)
\(L(\frac12)\) \(\approx\) \(0.134352 - 0.0938456i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.15 + 0.816i)T \)
3 \( 1 + (0.857 + 0.514i)T \)
good5 \( 1 + (3.82 - 1.36i)T + (3.86 - 3.17i)T^{2} \)
7 \( 1 + (4.41 - 1.34i)T + (5.82 - 3.88i)T^{2} \)
11 \( 1 + (-1.56 + 2.10i)T + (-3.19 - 10.5i)T^{2} \)
13 \( 1 + (4.03 - 1.90i)T + (8.24 - 10.0i)T^{2} \)
17 \( 1 + (5.01 - 0.998i)T + (15.7 - 6.50i)T^{2} \)
19 \( 1 + (-0.300 - 6.11i)T + (-18.9 + 1.86i)T^{2} \)
23 \( 1 + (-0.0676 - 0.686i)T + (-22.5 + 4.48i)T^{2} \)
29 \( 1 + (-1.04 + 7.07i)T + (-27.7 - 8.41i)T^{2} \)
31 \( 1 + (-0.0538 - 0.0223i)T + (21.9 + 21.9i)T^{2} \)
37 \( 1 + (1.37 + 1.51i)T + (-3.62 + 36.8i)T^{2} \)
41 \( 1 + (-3.65 - 2.99i)T + (7.99 + 40.2i)T^{2} \)
43 \( 1 + (2.44 + 4.08i)T + (-20.2 + 37.9i)T^{2} \)
47 \( 1 + (-4.11 - 2.74i)T + (17.9 + 43.4i)T^{2} \)
53 \( 1 + (1.30 + 8.81i)T + (-50.7 + 15.3i)T^{2} \)
59 \( 1 + (5.18 + 2.45i)T + (37.4 + 45.6i)T^{2} \)
61 \( 1 + (13.9 - 3.49i)T + (53.7 - 28.7i)T^{2} \)
67 \( 1 + (-1.40 - 5.61i)T + (-59.0 + 31.5i)T^{2} \)
71 \( 1 + (-2.72 - 1.45i)T + (39.4 + 59.0i)T^{2} \)
73 \( 1 + (-10.8 - 3.29i)T + (60.6 + 40.5i)T^{2} \)
79 \( 1 + (-6.13 - 9.18i)T + (-30.2 + 72.9i)T^{2} \)
83 \( 1 + (3.31 - 3.65i)T + (-8.13 - 82.6i)T^{2} \)
89 \( 1 + (-0.530 + 5.38i)T + (-87.2 - 17.3i)T^{2} \)
97 \( 1 + (-4.41 + 10.6i)T + (-68.5 - 68.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19537360155366158141133399451, −9.408011403696363816380073532357, −8.454241482804417894453600788529, −7.60001651012315373575561579318, −6.80080309151462022169633105182, −6.21531390577561407428704123203, −4.21702765410095262979537802594, −3.49812393178860647660514861753, −2.46613588529788194544745012787, −0.23826267467306305859468891476, 0.55102733198326317333007302274, 3.01908415517960998012680125790, 4.36189836165085588600983546604, 4.98626914205349721628359110624, 6.55544161424678907151152757428, 7.04562332002815869114542384712, 7.71838206988369390605500421222, 9.142410476087565047480885929086, 9.240290557693804098327336444140, 10.48139139685879047726942216445

Graph of the $Z$-function along the critical line