Properties

Label 2-768-24.11-c1-0-3
Degree $2$
Conductor $768$
Sign $0.408 - 0.912i$
Analytic cond. $6.13251$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.61 + 0.618i)3-s − 3.23·5-s − 1.23i·7-s + (2.23 − 2.00i)9-s − 5.23i·11-s + 4.47i·13-s + (5.23 − 2.00i)15-s + 2.47i·17-s + 0.763·19-s + (0.763 + 2.00i)21-s − 2.47·23-s + 5.47·25-s + (−2.38 + 4.61i)27-s + 4.76·29-s + 5.23i·31-s + ⋯
L(s)  = 1  + (−0.934 + 0.356i)3-s − 1.44·5-s − 0.467i·7-s + (0.745 − 0.666i)9-s − 1.57i·11-s + 1.24i·13-s + (1.35 − 0.516i)15-s + 0.599i·17-s + 0.175·19-s + (0.166 + 0.436i)21-s − 0.515·23-s + 1.09·25-s + (−0.458 + 0.888i)27-s + 0.884·29-s + 0.940i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $0.408 - 0.912i$
Analytic conductor: \(6.13251\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{768} (383, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :1/2),\ 0.408 - 0.912i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.524616 + 0.340072i\)
\(L(\frac12)\) \(\approx\) \(0.524616 + 0.340072i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.61 - 0.618i)T \)
good5 \( 1 + 3.23T + 5T^{2} \)
7 \( 1 + 1.23iT - 7T^{2} \)
11 \( 1 + 5.23iT - 11T^{2} \)
13 \( 1 - 4.47iT - 13T^{2} \)
17 \( 1 - 2.47iT - 17T^{2} \)
19 \( 1 - 0.763T + 19T^{2} \)
23 \( 1 + 2.47T + 23T^{2} \)
29 \( 1 - 4.76T + 29T^{2} \)
31 \( 1 - 5.23iT - 31T^{2} \)
37 \( 1 - 8.47iT - 37T^{2} \)
41 \( 1 - 6.47iT - 41T^{2} \)
43 \( 1 - 7.23T + 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 + 3.23T + 53T^{2} \)
59 \( 1 - 1.23iT - 59T^{2} \)
61 \( 1 + 0.472iT - 61T^{2} \)
67 \( 1 - 9.70T + 67T^{2} \)
71 \( 1 - 15.4T + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 - 0.291iT - 79T^{2} \)
83 \( 1 - 2.76iT - 83T^{2} \)
89 \( 1 - 4iT - 89T^{2} \)
97 \( 1 - 0.472T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78676894994886900847162676249, −9.780792051735879161479432725278, −8.633394749435101373939546296598, −7.966907365744911266720988421156, −6.83332850925299462284188648999, −6.21752813489160752839231896883, −4.91999316105519288251409516356, −4.07998570040077863170079467191, −3.37140658726089546864194931169, −0.981546609604123035453254277812, 0.47925865927692612212045167709, 2.33752077307676352294556198400, 3.88490084153041906223180962243, 4.78066862679563805895927793679, 5.62772530751221583752710294768, 6.84775663259973337774910849398, 7.57992738761191657202383396808, 8.073063598712233606110549096723, 9.442998909953476232287960401230, 10.33945484151978311406494592771

Graph of the $Z$-function along the critical line