L(s) = 1 | + (−1.61 + 0.618i)3-s − 3.23·5-s − 1.23i·7-s + (2.23 − 2.00i)9-s − 5.23i·11-s + 4.47i·13-s + (5.23 − 2.00i)15-s + 2.47i·17-s + 0.763·19-s + (0.763 + 2.00i)21-s − 2.47·23-s + 5.47·25-s + (−2.38 + 4.61i)27-s + 4.76·29-s + 5.23i·31-s + ⋯ |
L(s) = 1 | + (−0.934 + 0.356i)3-s − 1.44·5-s − 0.467i·7-s + (0.745 − 0.666i)9-s − 1.57i·11-s + 1.24i·13-s + (1.35 − 0.516i)15-s + 0.599i·17-s + 0.175·19-s + (0.166 + 0.436i)21-s − 0.515·23-s + 1.09·25-s + (−0.458 + 0.888i)27-s + 0.884·29-s + 0.940i·31-s + ⋯ |
Λ(s)=(=(768s/2ΓC(s)L(s)(0.408−0.912i)Λ(2−s)
Λ(s)=(=(768s/2ΓC(s+1/2)L(s)(0.408−0.912i)Λ(1−s)
Degree: |
2 |
Conductor: |
768
= 28⋅3
|
Sign: |
0.408−0.912i
|
Analytic conductor: |
6.13251 |
Root analytic conductor: |
2.47639 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ768(383,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 768, ( :1/2), 0.408−0.912i)
|
Particular Values
L(1) |
≈ |
0.524616+0.340072i |
L(21) |
≈ |
0.524616+0.340072i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.61−0.618i)T |
good | 5 | 1+3.23T+5T2 |
| 7 | 1+1.23iT−7T2 |
| 11 | 1+5.23iT−11T2 |
| 13 | 1−4.47iT−13T2 |
| 17 | 1−2.47iT−17T2 |
| 19 | 1−0.763T+19T2 |
| 23 | 1+2.47T+23T2 |
| 29 | 1−4.76T+29T2 |
| 31 | 1−5.23iT−31T2 |
| 37 | 1−8.47iT−37T2 |
| 41 | 1−6.47iT−41T2 |
| 43 | 1−7.23T+43T2 |
| 47 | 1+8T+47T2 |
| 53 | 1+3.23T+53T2 |
| 59 | 1−1.23iT−59T2 |
| 61 | 1+0.472iT−61T2 |
| 67 | 1−9.70T+67T2 |
| 71 | 1−15.4T+71T2 |
| 73 | 1−2T+73T2 |
| 79 | 1−0.291iT−79T2 |
| 83 | 1−2.76iT−83T2 |
| 89 | 1−4iT−89T2 |
| 97 | 1−0.472T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78676894994886900847162676249, −9.780792051735879161479432725278, −8.633394749435101373939546296598, −7.966907365744911266720988421156, −6.83332850925299462284188648999, −6.21752813489160752839231896883, −4.91999316105519288251409516356, −4.07998570040077863170079467191, −3.37140658726089546864194931169, −0.981546609604123035453254277812,
0.47925865927692612212045167709, 2.33752077307676352294556198400, 3.88490084153041906223180962243, 4.78066862679563805895927793679, 5.62772530751221583752710294768, 6.84775663259973337774910849398, 7.57992738761191657202383396808, 8.073063598712233606110549096723, 9.442998909953476232287960401230, 10.33945484151978311406494592771