L(s) = 1 | + (0.618 − 1.61i)3-s + 1.23·5-s + 3.23i·7-s + (−2.23 − 2.00i)9-s − 0.763i·11-s − 4.47i·13-s + (0.763 − 2.00i)15-s − 6.47i·17-s + 5.23·19-s + (5.23 + 2.00i)21-s + 6.47·23-s − 3.47·25-s + (−4.61 + 2.38i)27-s + 9.23·29-s + 0.763i·31-s + ⋯ |
L(s) = 1 | + (0.356 − 0.934i)3-s + 0.552·5-s + 1.22i·7-s + (−0.745 − 0.666i)9-s − 0.230i·11-s − 1.24i·13-s + (0.197 − 0.516i)15-s − 1.56i·17-s + 1.20·19-s + (1.14 + 0.436i)21-s + 1.34·23-s − 0.694·25-s + (−0.888 + 0.458i)27-s + 1.71·29-s + 0.137i·31-s + ⋯ |
Λ(s)=(=(768s/2ΓC(s)L(s)(0.408+0.912i)Λ(2−s)
Λ(s)=(=(768s/2ΓC(s+1/2)L(s)(0.408+0.912i)Λ(1−s)
Degree: |
2 |
Conductor: |
768
= 28⋅3
|
Sign: |
0.408+0.912i
|
Analytic conductor: |
6.13251 |
Root analytic conductor: |
2.47639 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ768(383,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 768, ( :1/2), 0.408+0.912i)
|
Particular Values
L(1) |
≈ |
1.56985−1.01762i |
L(21) |
≈ |
1.56985−1.01762i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.618+1.61i)T |
good | 5 | 1−1.23T+5T2 |
| 7 | 1−3.23iT−7T2 |
| 11 | 1+0.763iT−11T2 |
| 13 | 1+4.47iT−13T2 |
| 17 | 1+6.47iT−17T2 |
| 19 | 1−5.23T+19T2 |
| 23 | 1−6.47T+23T2 |
| 29 | 1−9.23T+29T2 |
| 31 | 1−0.763iT−31T2 |
| 37 | 1+0.472iT−37T2 |
| 41 | 1+2.47iT−41T2 |
| 43 | 1−2.76T+43T2 |
| 47 | 1+8T+47T2 |
| 53 | 1−1.23T+53T2 |
| 59 | 1+3.23iT−59T2 |
| 61 | 1−8.47iT−61T2 |
| 67 | 1+3.70T+67T2 |
| 71 | 1+11.4T+71T2 |
| 73 | 1−2T+73T2 |
| 79 | 1−13.7iT−79T2 |
| 83 | 1−7.23iT−83T2 |
| 89 | 1−4iT−89T2 |
| 97 | 1+8.47T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.933578679137095816712990570155, −9.203463525811448549476932953378, −8.483212531289877669703548751814, −7.59798614506119529994196141514, −6.71368811642471717302431040962, −5.66507361989607478536249095400, −5.17121339150905459758234223314, −3.03795318017681575240638062702, −2.62124695530669829008843234732, −1.02081493097523189981406554888,
1.57529871934387436279978745277, 3.11232730619813553288894916702, 4.13399543037172595332335176138, 4.82030855904975558518792360855, 6.05194532522764385833944496954, 7.01588506882836258599405623548, 8.008908528838254671261920918595, 8.958271565234225082256350097080, 9.750953125497315800468477289560, 10.32318757223453145073239624383