Properties

Label 2-768-1.1-c5-0-41
Degree $2$
Conductor $768$
Sign $-1$
Analytic cond. $123.174$
Root an. cond. $11.0984$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s − 21.1·5-s − 241.·7-s + 81·9-s + 641.·11-s + 316.·13-s + 190.·15-s − 901.·17-s − 2.16e3·19-s + 2.17e3·21-s + 397.·23-s − 2.67e3·25-s − 729·27-s + 5.17e3·29-s + 2.39e3·31-s − 5.77e3·33-s + 5.09e3·35-s + 1.35e4·37-s − 2.84e3·39-s + 1.10e4·41-s − 1.69e4·43-s − 1.71e3·45-s + 2.26e4·47-s + 4.13e4·49-s + 8.11e3·51-s + 7.71e3·53-s − 1.35e4·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·5-s − 1.86·7-s + 0.333·9-s + 1.59·11-s + 0.519·13-s + 0.218·15-s − 0.756·17-s − 1.37·19-s + 1.07·21-s + 0.156·23-s − 0.857·25-s − 0.192·27-s + 1.14·29-s + 0.446·31-s − 0.923·33-s + 0.702·35-s + 1.62·37-s − 0.299·39-s + 1.02·41-s − 1.39·43-s − 0.125·45-s + 1.49·47-s + 2.46·49-s + 0.436·51-s + 0.377·53-s − 0.604·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $-1$
Analytic conductor: \(123.174\)
Root analytic conductor: \(11.0984\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 768,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9T \)
good5 \( 1 + 21.1T + 3.12e3T^{2} \)
7 \( 1 + 241.T + 1.68e4T^{2} \)
11 \( 1 - 641.T + 1.61e5T^{2} \)
13 \( 1 - 316.T + 3.71e5T^{2} \)
17 \( 1 + 901.T + 1.41e6T^{2} \)
19 \( 1 + 2.16e3T + 2.47e6T^{2} \)
23 \( 1 - 397.T + 6.43e6T^{2} \)
29 \( 1 - 5.17e3T + 2.05e7T^{2} \)
31 \( 1 - 2.39e3T + 2.86e7T^{2} \)
37 \( 1 - 1.35e4T + 6.93e7T^{2} \)
41 \( 1 - 1.10e4T + 1.15e8T^{2} \)
43 \( 1 + 1.69e4T + 1.47e8T^{2} \)
47 \( 1 - 2.26e4T + 2.29e8T^{2} \)
53 \( 1 - 7.71e3T + 4.18e8T^{2} \)
59 \( 1 - 2.86e4T + 7.14e8T^{2} \)
61 \( 1 + 1.07e4T + 8.44e8T^{2} \)
67 \( 1 + 3.59e4T + 1.35e9T^{2} \)
71 \( 1 - 6.49e4T + 1.80e9T^{2} \)
73 \( 1 + 1.44e4T + 2.07e9T^{2} \)
79 \( 1 + 3.79e4T + 3.07e9T^{2} \)
83 \( 1 + 5.07e4T + 3.93e9T^{2} \)
89 \( 1 - 1.70e4T + 5.58e9T^{2} \)
97 \( 1 + 9.59e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.240368111414741184298332195684, −8.456710701411553918422417565420, −7.03534615399561064634260735961, −6.40538401328410834925881669638, −6.01601873762511092654435524312, −4.28329303678356244197492857666, −3.83641900805572710623015173597, −2.56310353243379249460569200159, −0.991974157558748293335408950532, 0, 0.991974157558748293335408950532, 2.56310353243379249460569200159, 3.83641900805572710623015173597, 4.28329303678356244197492857666, 6.01601873762511092654435524312, 6.40538401328410834925881669638, 7.03534615399561064634260735961, 8.456710701411553918422417565420, 9.240368111414741184298332195684

Graph of the $Z$-function along the critical line