Properties

Label 2-768-1.1-c5-0-23
Degree $2$
Conductor $768$
Sign $1$
Analytic cond. $123.174$
Root an. cond. $11.0984$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s − 46.1·5-s + 59.9·7-s + 81·9-s + 400.·11-s − 351.·13-s − 415.·15-s + 1.66e3·17-s + 564.·19-s + 539.·21-s − 3.83e3·23-s − 994.·25-s + 729·27-s + 5.94e3·29-s + 2.67e3·31-s + 3.60e3·33-s − 2.76e3·35-s − 771.·37-s − 3.16e3·39-s + 5.11e3·41-s − 9.51e3·43-s − 3.73e3·45-s − 8.13e3·47-s − 1.32e4·49-s + 1.49e4·51-s − 1.10e4·53-s − 1.84e4·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.825·5-s + 0.462·7-s + 0.333·9-s + 0.996·11-s − 0.577·13-s − 0.476·15-s + 1.39·17-s + 0.358·19-s + 0.266·21-s − 1.51·23-s − 0.318·25-s + 0.192·27-s + 1.31·29-s + 0.500·31-s + 0.575·33-s − 0.381·35-s − 0.0926·37-s − 0.333·39-s + 0.475·41-s − 0.785·43-s − 0.275·45-s − 0.537·47-s − 0.786·49-s + 0.805·51-s − 0.540·53-s − 0.823·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $1$
Analytic conductor: \(123.174\)
Root analytic conductor: \(11.0984\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.687391636\)
\(L(\frac12)\) \(\approx\) \(2.687391636\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
good5 \( 1 + 46.1T + 3.12e3T^{2} \)
7 \( 1 - 59.9T + 1.68e4T^{2} \)
11 \( 1 - 400.T + 1.61e5T^{2} \)
13 \( 1 + 351.T + 3.71e5T^{2} \)
17 \( 1 - 1.66e3T + 1.41e6T^{2} \)
19 \( 1 - 564.T + 2.47e6T^{2} \)
23 \( 1 + 3.83e3T + 6.43e6T^{2} \)
29 \( 1 - 5.94e3T + 2.05e7T^{2} \)
31 \( 1 - 2.67e3T + 2.86e7T^{2} \)
37 \( 1 + 771.T + 6.93e7T^{2} \)
41 \( 1 - 5.11e3T + 1.15e8T^{2} \)
43 \( 1 + 9.51e3T + 1.47e8T^{2} \)
47 \( 1 + 8.13e3T + 2.29e8T^{2} \)
53 \( 1 + 1.10e4T + 4.18e8T^{2} \)
59 \( 1 - 3.21e4T + 7.14e8T^{2} \)
61 \( 1 - 3.54e4T + 8.44e8T^{2} \)
67 \( 1 + 1.13e4T + 1.35e9T^{2} \)
71 \( 1 + 1.03e4T + 1.80e9T^{2} \)
73 \( 1 - 4.00e4T + 2.07e9T^{2} \)
79 \( 1 + 2.57e4T + 3.07e9T^{2} \)
83 \( 1 + 2.23e3T + 3.93e9T^{2} \)
89 \( 1 - 1.51e4T + 5.58e9T^{2} \)
97 \( 1 - 1.58e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.695987990752814043425832893869, −8.447701619539342228957415863285, −7.990562540987930008867250769063, −7.19066712930762135534513912661, −6.13030212632280204823464827997, −4.88961607805879797419179492134, −3.98787599612290740667420887786, −3.19960495410974915025253653855, −1.87874411251535549999999289861, −0.75332784551877371813971327839, 0.75332784551877371813971327839, 1.87874411251535549999999289861, 3.19960495410974915025253653855, 3.98787599612290740667420887786, 4.88961607805879797419179492134, 6.13030212632280204823464827997, 7.19066712930762135534513912661, 7.990562540987930008867250769063, 8.447701619539342228957415863285, 9.695987990752814043425832893869

Graph of the $Z$-function along the critical line