L(s) = 1 | − 3·3-s + 18.4·5-s + 22.4·7-s + 9·9-s + 53.6·11-s − 7.15·13-s − 55.2·15-s + 39.6·17-s + 125.·19-s − 67.2·21-s + 99.1·23-s + 214.·25-s − 27·27-s − 205.·29-s + 147.·31-s − 161.·33-s + 413.·35-s − 125.·37-s + 21.4·39-s − 506.·41-s − 413.·43-s + 165.·45-s − 313.·47-s + 159.·49-s − 119.·51-s + 44.3·53-s + 989.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.64·5-s + 1.21·7-s + 0.333·9-s + 1.47·11-s − 0.152·13-s − 0.951·15-s + 0.566·17-s + 1.51·19-s − 0.698·21-s + 0.898·23-s + 1.71·25-s − 0.192·27-s − 1.31·29-s + 0.854·31-s − 0.849·33-s + 1.99·35-s − 0.558·37-s + 0.0881·39-s − 1.92·41-s − 1.46·43-s + 0.549·45-s − 0.974·47-s + 0.465·49-s − 0.326·51-s + 0.114·53-s + 2.42·55-s + ⋯ |
Λ(s)=(=(768s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(768s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.225810556 |
L(21) |
≈ |
3.225810556 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
good | 5 | 1−18.4T+125T2 |
| 7 | 1−22.4T+343T2 |
| 11 | 1−53.6T+1.33e3T2 |
| 13 | 1+7.15T+2.19e3T2 |
| 17 | 1−39.6T+4.91e3T2 |
| 19 | 1−125.T+6.85e3T2 |
| 23 | 1−99.1T+1.21e4T2 |
| 29 | 1+205.T+2.43e4T2 |
| 31 | 1−147.T+2.97e4T2 |
| 37 | 1+125.T+5.06e4T2 |
| 41 | 1+506.T+6.89e4T2 |
| 43 | 1+413.T+7.95e4T2 |
| 47 | 1+313.T+1.03e5T2 |
| 53 | 1−44.3T+1.48e5T2 |
| 59 | 1+324T+2.05e5T2 |
| 61 | 1+324T+2.26e5T2 |
| 67 | 1+464.T+3.00e5T2 |
| 71 | 1−1.05e3T+3.57e5T2 |
| 73 | 1−1.02e3T+3.89e5T2 |
| 79 | 1+602.T+4.93e5T2 |
| 83 | 1+15.8T+5.71e5T2 |
| 89 | 1−381.T+7.04e5T2 |
| 97 | 1−659.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.779448909852847382546060161511, −9.376116940647493922457025597649, −8.303183989998309634106053644143, −7.09610897635939671834875333761, −6.35944992436599034656280145784, −5.33154424284670448438037634895, −4.93416257826124655930273353864, −3.37133580911363636842801467903, −1.73238364787003067350675067632, −1.25834291926636198745532918757,
1.25834291926636198745532918757, 1.73238364787003067350675067632, 3.37133580911363636842801467903, 4.93416257826124655930273353864, 5.33154424284670448438037634895, 6.35944992436599034656280145784, 7.09610897635939671834875333761, 8.303183989998309634106053644143, 9.376116940647493922457025597649, 9.779448909852847382546060161511