Properties

Label 2-7665-1.1-c1-0-107
Degree $2$
Conductor $7665$
Sign $-1$
Analytic cond. $61.2053$
Root an. cond. $7.82338$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.66·2-s − 3-s + 0.784·4-s + 5-s + 1.66·6-s − 7-s + 2.02·8-s + 9-s − 1.66·10-s − 5.31·11-s − 0.784·12-s − 4.52·13-s + 1.66·14-s − 15-s − 4.95·16-s − 6.34·17-s − 1.66·18-s − 0.456·19-s + 0.784·20-s + 21-s + 8.86·22-s + 2.14·23-s − 2.02·24-s + 25-s + 7.55·26-s − 27-s − 0.784·28-s + ⋯
L(s)  = 1  − 1.18·2-s − 0.577·3-s + 0.392·4-s + 0.447·5-s + 0.681·6-s − 0.377·7-s + 0.716·8-s + 0.333·9-s − 0.527·10-s − 1.60·11-s − 0.226·12-s − 1.25·13-s + 0.446·14-s − 0.258·15-s − 1.23·16-s − 1.53·17-s − 0.393·18-s − 0.104·19-s + 0.175·20-s + 0.218·21-s + 1.88·22-s + 0.447·23-s − 0.413·24-s + 0.200·25-s + 1.48·26-s − 0.192·27-s − 0.148·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7665 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7665 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7665\)    =    \(3 \cdot 5 \cdot 7 \cdot 73\)
Sign: $-1$
Analytic conductor: \(61.2053\)
Root analytic conductor: \(7.82338\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7665,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
73 \( 1 - T \)
good2 \( 1 + 1.66T + 2T^{2} \)
11 \( 1 + 5.31T + 11T^{2} \)
13 \( 1 + 4.52T + 13T^{2} \)
17 \( 1 + 6.34T + 17T^{2} \)
19 \( 1 + 0.456T + 19T^{2} \)
23 \( 1 - 2.14T + 23T^{2} \)
29 \( 1 - 1.46T + 29T^{2} \)
31 \( 1 + 0.314T + 31T^{2} \)
37 \( 1 - 8.62T + 37T^{2} \)
41 \( 1 - 5.56T + 41T^{2} \)
43 \( 1 - 1.66T + 43T^{2} \)
47 \( 1 - 8.41T + 47T^{2} \)
53 \( 1 - 11.4T + 53T^{2} \)
59 \( 1 + 9.97T + 59T^{2} \)
61 \( 1 - 10.3T + 61T^{2} \)
67 \( 1 - 4.63T + 67T^{2} \)
71 \( 1 - 11.1T + 71T^{2} \)
79 \( 1 + 14.1T + 79T^{2} \)
83 \( 1 - 5.37T + 83T^{2} \)
89 \( 1 - 16.0T + 89T^{2} \)
97 \( 1 - 1.08T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54735741487106331958591774203, −7.05477262203045582191354089469, −6.30137381380080579408956736149, −5.39499102485573154712116630784, −4.83203016785696107778129598676, −4.13783295297059027162749845250, −2.47088110586184801544470112150, −2.36728502157197297807927550314, −0.837753223054736450172110903166, 0, 0.837753223054736450172110903166, 2.36728502157197297807927550314, 2.47088110586184801544470112150, 4.13783295297059027162749845250, 4.83203016785696107778129598676, 5.39499102485573154712116630784, 6.30137381380080579408956736149, 7.05477262203045582191354089469, 7.54735741487106331958591774203

Graph of the $Z$-function along the critical line