L(s) = 1 | − 1.61·3-s − 0.618·5-s + 7-s − 0.381·9-s − 0.763·11-s − 1.23·13-s + 1.00·15-s + 17-s − 8.47·19-s − 1.61·21-s + 7.70·23-s − 4.61·25-s + 5.47·27-s + 5.70·29-s − 6.32·31-s + 1.23·33-s − 0.618·35-s − 0.472·37-s + 2.00·39-s − 0.0901·41-s − 12.0·43-s + 0.236·45-s + 8.47·47-s + 49-s − 1.61·51-s − 10.7·53-s + 0.472·55-s + ⋯ |
L(s) = 1 | − 0.934·3-s − 0.276·5-s + 0.377·7-s − 0.127·9-s − 0.230·11-s − 0.342·13-s + 0.258·15-s + 0.242·17-s − 1.94·19-s − 0.353·21-s + 1.60·23-s − 0.923·25-s + 1.05·27-s + 1.05·29-s − 1.13·31-s + 0.215·33-s − 0.104·35-s − 0.0776·37-s + 0.320·39-s − 0.0140·41-s − 1.84·43-s + 0.0351·45-s + 1.23·47-s + 0.142·49-s − 0.226·51-s − 1.48·53-s + 0.0636·55-s + ⋯ |
Λ(s)=(=(7616s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7616s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7510357998 |
L(21) |
≈ |
0.7510357998 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−T |
| 17 | 1−T |
good | 3 | 1+1.61T+3T2 |
| 5 | 1+0.618T+5T2 |
| 11 | 1+0.763T+11T2 |
| 13 | 1+1.23T+13T2 |
| 19 | 1+8.47T+19T2 |
| 23 | 1−7.70T+23T2 |
| 29 | 1−5.70T+29T2 |
| 31 | 1+6.32T+31T2 |
| 37 | 1+0.472T+37T2 |
| 41 | 1+0.0901T+41T2 |
| 43 | 1+12.0T+43T2 |
| 47 | 1−8.47T+47T2 |
| 53 | 1+10.7T+53T2 |
| 59 | 1+59T2 |
| 61 | 1−7.32T+61T2 |
| 67 | 1+13.0T+67T2 |
| 71 | 1+10.9T+71T2 |
| 73 | 1−7.14T+73T2 |
| 79 | 1+2.94T+79T2 |
| 83 | 1−15.4T+83T2 |
| 89 | 1−2T+89T2 |
| 97 | 1−15.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.85321447766400466279884035026, −7.07108608951389518664019393260, −6.43328215411556502267113282878, −5.80776637951241252556581362967, −4.98042881469667387876819810878, −4.61045239395297084914147401505, −3.59647017718094309831269773891, −2.66819410727380007603645683899, −1.69010823860617216346377122733, −0.44895121116020088799937542157,
0.44895121116020088799937542157, 1.69010823860617216346377122733, 2.66819410727380007603645683899, 3.59647017718094309831269773891, 4.61045239395297084914147401505, 4.98042881469667387876819810878, 5.80776637951241252556581362967, 6.43328215411556502267113282878, 7.07108608951389518664019393260, 7.85321447766400466279884035026