Properties

Label 2-7616-1.1-c1-0-21
Degree $2$
Conductor $7616$
Sign $1$
Analytic cond. $60.8140$
Root an. cond. $7.79833$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·3-s − 0.618·5-s + 7-s − 0.381·9-s − 0.763·11-s − 1.23·13-s + 1.00·15-s + 17-s − 8.47·19-s − 1.61·21-s + 7.70·23-s − 4.61·25-s + 5.47·27-s + 5.70·29-s − 6.32·31-s + 1.23·33-s − 0.618·35-s − 0.472·37-s + 2.00·39-s − 0.0901·41-s − 12.0·43-s + 0.236·45-s + 8.47·47-s + 49-s − 1.61·51-s − 10.7·53-s + 0.472·55-s + ⋯
L(s)  = 1  − 0.934·3-s − 0.276·5-s + 0.377·7-s − 0.127·9-s − 0.230·11-s − 0.342·13-s + 0.258·15-s + 0.242·17-s − 1.94·19-s − 0.353·21-s + 1.60·23-s − 0.923·25-s + 1.05·27-s + 1.05·29-s − 1.13·31-s + 0.215·33-s − 0.104·35-s − 0.0776·37-s + 0.320·39-s − 0.0140·41-s − 1.84·43-s + 0.0351·45-s + 1.23·47-s + 0.142·49-s − 0.226·51-s − 1.48·53-s + 0.0636·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7616\)    =    \(2^{6} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(60.8140\)
Root analytic conductor: \(7.79833\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7616,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7510357998\)
\(L(\frac12)\) \(\approx\) \(0.7510357998\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 + 1.61T + 3T^{2} \)
5 \( 1 + 0.618T + 5T^{2} \)
11 \( 1 + 0.763T + 11T^{2} \)
13 \( 1 + 1.23T + 13T^{2} \)
19 \( 1 + 8.47T + 19T^{2} \)
23 \( 1 - 7.70T + 23T^{2} \)
29 \( 1 - 5.70T + 29T^{2} \)
31 \( 1 + 6.32T + 31T^{2} \)
37 \( 1 + 0.472T + 37T^{2} \)
41 \( 1 + 0.0901T + 41T^{2} \)
43 \( 1 + 12.0T + 43T^{2} \)
47 \( 1 - 8.47T + 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 7.32T + 61T^{2} \)
67 \( 1 + 13.0T + 67T^{2} \)
71 \( 1 + 10.9T + 71T^{2} \)
73 \( 1 - 7.14T + 73T^{2} \)
79 \( 1 + 2.94T + 79T^{2} \)
83 \( 1 - 15.4T + 83T^{2} \)
89 \( 1 - 2T + 89T^{2} \)
97 \( 1 - 15.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85321447766400466279884035026, −7.07108608951389518664019393260, −6.43328215411556502267113282878, −5.80776637951241252556581362967, −4.98042881469667387876819810878, −4.61045239395297084914147401505, −3.59647017718094309831269773891, −2.66819410727380007603645683899, −1.69010823860617216346377122733, −0.44895121116020088799937542157, 0.44895121116020088799937542157, 1.69010823860617216346377122733, 2.66819410727380007603645683899, 3.59647017718094309831269773891, 4.61045239395297084914147401505, 4.98042881469667387876819810878, 5.80776637951241252556581362967, 6.43328215411556502267113282878, 7.07108608951389518664019393260, 7.85321447766400466279884035026

Graph of the $Z$-function along the critical line