Properties

Label 2-7600-1.1-c1-0-80
Degree $2$
Conductor $7600$
Sign $-1$
Analytic cond. $60.6863$
Root an. cond. $7.79014$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.25·3-s − 4.22·7-s + 2.08·9-s + 5.13·11-s + 3.16·13-s − 6.48·17-s + 19-s + 9.53·21-s − 7.56·23-s + 2.05·27-s + 0.832·29-s + 4.51·31-s − 11.5·33-s + 0.137·37-s − 7.14·39-s − 11.6·41-s + 2.51·43-s + 5.96·47-s + 10.8·49-s + 14.6·51-s + 0.225·53-s − 2.25·57-s − 5.39·59-s + 14.4·61-s − 8.82·63-s + 4.11·67-s + 17.0·69-s + ⋯
L(s)  = 1  − 1.30·3-s − 1.59·7-s + 0.695·9-s + 1.54·11-s + 0.878·13-s − 1.57·17-s + 0.229·19-s + 2.07·21-s − 1.57·23-s + 0.395·27-s + 0.154·29-s + 0.810·31-s − 2.01·33-s + 0.0226·37-s − 1.14·39-s − 1.81·41-s + 0.382·43-s + 0.869·47-s + 1.55·49-s + 2.04·51-s + 0.0309·53-s − 0.298·57-s − 0.702·59-s + 1.85·61-s − 1.11·63-s + 0.502·67-s + 2.05·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7600\)    =    \(2^{4} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(60.6863\)
Root analytic conductor: \(7.79014\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 2.25T + 3T^{2} \)
7 \( 1 + 4.22T + 7T^{2} \)
11 \( 1 - 5.13T + 11T^{2} \)
13 \( 1 - 3.16T + 13T^{2} \)
17 \( 1 + 6.48T + 17T^{2} \)
23 \( 1 + 7.56T + 23T^{2} \)
29 \( 1 - 0.832T + 29T^{2} \)
31 \( 1 - 4.51T + 31T^{2} \)
37 \( 1 - 0.137T + 37T^{2} \)
41 \( 1 + 11.6T + 41T^{2} \)
43 \( 1 - 2.51T + 43T^{2} \)
47 \( 1 - 5.96T + 47T^{2} \)
53 \( 1 - 0.225T + 53T^{2} \)
59 \( 1 + 5.39T + 59T^{2} \)
61 \( 1 - 14.4T + 61T^{2} \)
67 \( 1 - 4.11T + 67T^{2} \)
71 \( 1 + 3.82T + 71T^{2} \)
73 \( 1 - 4.70T + 73T^{2} \)
79 \( 1 + 10.6T + 79T^{2} \)
83 \( 1 - 12.0T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 - 3.93T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.03713252093506338018453144333, −6.65813023076472789924135934952, −6.16592436759387901156598238660, −5.80032014915015338544985018101, −4.64678711959901529819808212148, −3.97831497810698627751373789667, −3.35573897044826210629920924165, −2.13990374872545626816333936382, −0.949037716635654469383738311356, 0, 0.949037716635654469383738311356, 2.13990374872545626816333936382, 3.35573897044826210629920924165, 3.97831497810698627751373789667, 4.64678711959901529819808212148, 5.80032014915015338544985018101, 6.16592436759387901156598238660, 6.65813023076472789924135934952, 7.03713252093506338018453144333

Graph of the $Z$-function along the critical line