L(s) = 1 | − 2.25·3-s − 4.22·7-s + 2.08·9-s + 5.13·11-s + 3.16·13-s − 6.48·17-s + 19-s + 9.53·21-s − 7.56·23-s + 2.05·27-s + 0.832·29-s + 4.51·31-s − 11.5·33-s + 0.137·37-s − 7.14·39-s − 11.6·41-s + 2.51·43-s + 5.96·47-s + 10.8·49-s + 14.6·51-s + 0.225·53-s − 2.25·57-s − 5.39·59-s + 14.4·61-s − 8.82·63-s + 4.11·67-s + 17.0·69-s + ⋯ |
L(s) = 1 | − 1.30·3-s − 1.59·7-s + 0.695·9-s + 1.54·11-s + 0.878·13-s − 1.57·17-s + 0.229·19-s + 2.07·21-s − 1.57·23-s + 0.395·27-s + 0.154·29-s + 0.810·31-s − 2.01·33-s + 0.0226·37-s − 1.14·39-s − 1.81·41-s + 0.382·43-s + 0.869·47-s + 1.55·49-s + 2.04·51-s + 0.0309·53-s − 0.298·57-s − 0.702·59-s + 1.85·61-s − 1.11·63-s + 0.502·67-s + 2.05·69-s + ⋯ |
Λ(s)=(=(7600s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7600s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1+2.25T+3T2 |
| 7 | 1+4.22T+7T2 |
| 11 | 1−5.13T+11T2 |
| 13 | 1−3.16T+13T2 |
| 17 | 1+6.48T+17T2 |
| 23 | 1+7.56T+23T2 |
| 29 | 1−0.832T+29T2 |
| 31 | 1−4.51T+31T2 |
| 37 | 1−0.137T+37T2 |
| 41 | 1+11.6T+41T2 |
| 43 | 1−2.51T+43T2 |
| 47 | 1−5.96T+47T2 |
| 53 | 1−0.225T+53T2 |
| 59 | 1+5.39T+59T2 |
| 61 | 1−14.4T+61T2 |
| 67 | 1−4.11T+67T2 |
| 71 | 1+3.82T+71T2 |
| 73 | 1−4.70T+73T2 |
| 79 | 1+10.6T+79T2 |
| 83 | 1−12.0T+83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1−3.93T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.03713252093506338018453144333, −6.65813023076472789924135934952, −6.16592436759387901156598238660, −5.80032014915015338544985018101, −4.64678711959901529819808212148, −3.97831497810698627751373789667, −3.35573897044826210629920924165, −2.13990374872545626816333936382, −0.949037716635654469383738311356, 0,
0.949037716635654469383738311356, 2.13990374872545626816333936382, 3.35573897044826210629920924165, 3.97831497810698627751373789667, 4.64678711959901529819808212148, 5.80032014915015338544985018101, 6.16592436759387901156598238660, 6.65813023076472789924135934952, 7.03713252093506338018453144333