| L(s) = 1 | + (−1.01 + 0.989i)2-s + 0.530i·3-s + (0.0426 − 1.99i)4-s − i·5-s + (−0.525 − 0.536i)6-s + 1.59·7-s + (1.93 + 2.06i)8-s + 2.71·9-s + (0.989 + 1.01i)10-s − 4.08i·11-s + (1.06 + 0.0226i)12-s − 4.29i·13-s + (−1.61 + 1.58i)14-s + 0.530·15-s + (−3.99 − 0.170i)16-s − 7.51·17-s + ⋯ |
| L(s) = 1 | + (−0.714 + 0.699i)2-s + 0.306i·3-s + (0.0213 − 0.999i)4-s − 0.447i·5-s + (−0.214 − 0.219i)6-s + 0.604·7-s + (0.684 + 0.729i)8-s + 0.906·9-s + (0.312 + 0.319i)10-s − 1.23i·11-s + (0.306 + 0.00653i)12-s − 1.19i·13-s + (−0.431 + 0.422i)14-s + 0.137·15-s + (−0.999 − 0.0426i)16-s − 1.82·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.684 + 0.729i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.684 + 0.729i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.874947 - 0.378920i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.874947 - 0.378920i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.01 - 0.989i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
| good | 3 | \( 1 - 0.530iT - 3T^{2} \) |
| 7 | \( 1 - 1.59T + 7T^{2} \) |
| 11 | \( 1 + 4.08iT - 11T^{2} \) |
| 13 | \( 1 + 4.29iT - 13T^{2} \) |
| 17 | \( 1 + 7.51T + 17T^{2} \) |
| 23 | \( 1 + 7.97T + 23T^{2} \) |
| 29 | \( 1 + 5.77iT - 29T^{2} \) |
| 31 | \( 1 - 3.57T + 31T^{2} \) |
| 37 | \( 1 + 1.10iT - 37T^{2} \) |
| 41 | \( 1 - 2.90T + 41T^{2} \) |
| 43 | \( 1 - 4.31iT - 43T^{2} \) |
| 47 | \( 1 - 6.15T + 47T^{2} \) |
| 53 | \( 1 + 11.5iT - 53T^{2} \) |
| 59 | \( 1 + 6.91iT - 59T^{2} \) |
| 61 | \( 1 + 4.61iT - 61T^{2} \) |
| 67 | \( 1 - 10.2iT - 67T^{2} \) |
| 71 | \( 1 - 11.3T + 71T^{2} \) |
| 73 | \( 1 - 15.1T + 73T^{2} \) |
| 79 | \( 1 + 3.08T + 79T^{2} \) |
| 83 | \( 1 - 3.40iT - 83T^{2} \) |
| 89 | \( 1 + 13.5T + 89T^{2} \) |
| 97 | \( 1 - 3.07T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06015202576458028824243255856, −9.329376908290471219250103560635, −8.187535593259452632021157694615, −8.107932916222089077467792512469, −6.73710980876080815483893596396, −5.89483462982306575942020506261, −4.94161194756588215092936606672, −4.04283028546845120022314502625, −2.15113858254125142445458750921, −0.61726254593048996314239163059,
1.70866474077615257360051665354, 2.27316782650361861038652884422, 4.10270858684301189278457392454, 4.53235808818573427222908284736, 6.52327204915914744671866761280, 7.10293138772722815859678848985, 7.87237134750806433152591312455, 8.905793457628784836962662331815, 9.660688501652673653112817598734, 10.44640312264591195284298509635