L(s) = 1 | + (−0.382 + 0.923i)2-s + 0.765i·3-s + (−0.707 − 0.707i)4-s − i·5-s + (−0.707 − 0.292i)6-s + (0.923 − 0.382i)8-s + 0.414·9-s + (0.923 + 0.382i)10-s − 1.41i·11-s + (0.541 − 0.541i)12-s − 1.84i·13-s + 0.765·15-s + i·16-s + (−0.158 + 0.382i)18-s + i·19-s + (−0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (−0.382 + 0.923i)2-s + 0.765i·3-s + (−0.707 − 0.707i)4-s − i·5-s + (−0.707 − 0.292i)6-s + (0.923 − 0.382i)8-s + 0.414·9-s + (0.923 + 0.382i)10-s − 1.41i·11-s + (0.541 − 0.541i)12-s − 1.84i·13-s + 0.765·15-s + i·16-s + (−0.158 + 0.382i)18-s + i·19-s + (−0.707 + 0.707i)20-s + ⋯ |
Λ(s)=(=(760s/2ΓC(s)L(s)(0.923−0.382i)Λ(1−s)
Λ(s)=(=(760s/2ΓC(s)L(s)(0.923−0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
760
= 23⋅5⋅19
|
Sign: |
0.923−0.382i
|
Analytic conductor: |
0.379289 |
Root analytic conductor: |
0.615864 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ760(189,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 760, ( :0), 0.923−0.382i)
|
Particular Values
L(21) |
≈ |
0.7652315986 |
L(21) |
≈ |
0.7652315986 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.382−0.923i)T |
| 5 | 1+iT |
| 19 | 1−iT |
good | 3 | 1−0.765iT−T2 |
| 7 | 1−T2 |
| 11 | 1+1.41iT−T2 |
| 13 | 1+1.84iT−T2 |
| 17 | 1−T2 |
| 23 | 1−T2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1−0.765iT−T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1−T2 |
| 53 | 1+0.765iT−T2 |
| 59 | 1+T2 |
| 61 | 1−1.41iT−T2 |
| 67 | 1−1.84iT−T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1+1.84T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22467616710998489542562032798, −9.774525656887856241351642908736, −8.592753052261509320041223596891, −8.327613216072979561010171038131, −7.32190560437348964866597178948, −5.81730222421585674546816566393, −5.51542614978338252233282019947, −4.43419599092851498938453175301, −3.44280843102116869893743109298, −1.04323228490519563664463447560,
1.78344252486711102387075959893, 2.42085619131412664265747652184, 3.92515368015775189451262716555, 4.71721524418332331860155676176, 6.55009617606950544689008705295, 7.12342606537913083977318859501, 7.73446317341803541229733829064, 9.118886733049526694471597905605, 9.645858487647965762154122222754, 10.55044517793837874624863700973