L(s) = 1 | + (1.06 − 0.927i)2-s − 1.19·3-s + (0.280 − 1.98i)4-s + 1.56·5-s + (−1.28 + 1.11i)6-s + 0.868i·7-s + (−1.53 − 2.37i)8-s − 1.56·9-s + (1.66 − 1.44i)10-s + 3.09i·11-s + (−0.336 + 2.37i)12-s + 4.74i·13-s + (0.804 + 0.927i)14-s − 1.87·15-s + (−3.84 − 1.11i)16-s − 17-s + ⋯ |
L(s) = 1 | + (0.755 − 0.655i)2-s − 0.692·3-s + (0.140 − 0.990i)4-s + 0.698·5-s + (−0.522 + 0.453i)6-s + 0.328i·7-s + (−0.543 − 0.839i)8-s − 0.520·9-s + (0.527 − 0.457i)10-s + 0.932i·11-s + (−0.0972 + 0.685i)12-s + 1.31i·13-s + (0.215 + 0.247i)14-s − 0.483·15-s + (−0.960 − 0.277i)16-s − 0.242·17-s + ⋯ |
Λ(s)=(=(76s/2ΓC(s)L(s)(0.603+0.797i)Λ(2−s)
Λ(s)=(=(76s/2ΓC(s+1/2)L(s)(0.603+0.797i)Λ(1−s)
Degree: |
2 |
Conductor: |
76
= 22⋅19
|
Sign: |
0.603+0.797i
|
Analytic conductor: |
0.606863 |
Root analytic conductor: |
0.779014 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ76(75,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 76, ( :1/2), 0.603+0.797i)
|
Particular Values
L(1) |
≈ |
1.03052−0.512508i |
L(21) |
≈ |
1.03052−0.512508i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.06+0.927i)T |
| 19 | 1+(−3.07+3.09i)T |
good | 3 | 1+1.19T+3T2 |
| 5 | 1−1.56T+5T2 |
| 7 | 1−0.868iT−7T2 |
| 11 | 1−3.09iT−11T2 |
| 13 | 1−4.74iT−13T2 |
| 17 | 1+T+17T2 |
| 23 | 1+3.96iT−23T2 |
| 29 | 1+8.45iT−29T2 |
| 31 | 1+4.27T+31T2 |
| 37 | 1−3.70iT−37T2 |
| 41 | 1+3.70iT−41T2 |
| 43 | 1−11.0iT−43T2 |
| 47 | 1+9.27iT−47T2 |
| 53 | 1−1.04iT−53T2 |
| 59 | 1−11.6T+59T2 |
| 61 | 1+0.684T+61T2 |
| 67 | 1+9.74T+67T2 |
| 71 | 1+10.9T+71T2 |
| 73 | 1−8.12T+73T2 |
| 79 | 1+8.01T+79T2 |
| 83 | 1−9.65iT−83T2 |
| 89 | 1+5.79iT−89T2 |
| 97 | 1−16.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.15056735641180988280449719782, −13.24916265150195017301943112562, −11.98793472986176145255184472531, −11.42202548566248900053695846140, −10.09689573793728439140077686579, −9.132640273946707744970785067147, −6.76656881913769197688988453338, −5.71508598516158499356213175893, −4.50781930093701196262537216478, −2.27673060046378987766924326058,
3.32472764545595268802635285011, 5.42207377499383622179197897989, 5.88743290187322996826442695187, 7.44800365659175530128906231750, 8.784772504140371997895987787647, 10.50749616570065624228243596259, 11.54757108419020966380362268511, 12.72411917044511659573645710998, 13.69803480950288826711553840107, 14.49195505430138544548757172363