L(s) = 1 | − 0.305·2-s − 1.90·4-s − 1.87·7-s + 1.19·8-s − 5.53·11-s − 3.38·13-s + 0.571·14-s + 3.44·16-s + 6.94·17-s − 3.10·19-s + 1.69·22-s + 4.02·23-s + 1.03·26-s + 3.56·28-s − 4.73·29-s + 3.79·31-s − 3.44·32-s − 2.12·34-s − 7.24·37-s + 0.949·38-s − 4.81·41-s − 8.46·43-s + 10.5·44-s − 1.22·46-s − 6.19·47-s − 3.49·49-s + 6.45·52-s + ⋯ |
L(s) = 1 | − 0.216·2-s − 0.953·4-s − 0.707·7-s + 0.422·8-s − 1.67·11-s − 0.939·13-s + 0.152·14-s + 0.862·16-s + 1.68·17-s − 0.712·19-s + 0.360·22-s + 0.838·23-s + 0.202·26-s + 0.674·28-s − 0.879·29-s + 0.681·31-s − 0.608·32-s − 0.363·34-s − 1.19·37-s + 0.153·38-s − 0.751·41-s − 1.29·43-s + 1.59·44-s − 0.181·46-s − 0.903·47-s − 0.499·49-s + 0.895·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5625 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5625 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4881664343\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4881664343\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 0.305T + 2T^{2} \) |
| 7 | \( 1 + 1.87T + 7T^{2} \) |
| 11 | \( 1 + 5.53T + 11T^{2} \) |
| 13 | \( 1 + 3.38T + 13T^{2} \) |
| 17 | \( 1 - 6.94T + 17T^{2} \) |
| 19 | \( 1 + 3.10T + 19T^{2} \) |
| 23 | \( 1 - 4.02T + 23T^{2} \) |
| 29 | \( 1 + 4.73T + 29T^{2} \) |
| 31 | \( 1 - 3.79T + 31T^{2} \) |
| 37 | \( 1 + 7.24T + 37T^{2} \) |
| 41 | \( 1 + 4.81T + 41T^{2} \) |
| 43 | \( 1 + 8.46T + 43T^{2} \) |
| 47 | \( 1 + 6.19T + 47T^{2} \) |
| 53 | \( 1 + 10.7T + 53T^{2} \) |
| 59 | \( 1 + 5.75T + 59T^{2} \) |
| 61 | \( 1 - 2.85T + 61T^{2} \) |
| 67 | \( 1 + 3.56T + 67T^{2} \) |
| 71 | \( 1 - 8.39T + 71T^{2} \) |
| 73 | \( 1 + 1.51T + 73T^{2} \) |
| 79 | \( 1 + 0.629T + 79T^{2} \) |
| 83 | \( 1 + 0.927T + 83T^{2} \) |
| 89 | \( 1 - 0.959T + 89T^{2} \) |
| 97 | \( 1 - 15.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.042512878501256079078227814948, −7.67916473818735356206356341237, −6.82428213875303319366584210901, −5.83941483718982158749066077151, −5.05118823487343792962296918251, −4.81045776780513136117897036124, −3.42646585207210023755408273697, −3.07600303330003000673927066556, −1.79599698962759064486971897142, −0.37585081288118881034851249046,
0.37585081288118881034851249046, 1.79599698962759064486971897142, 3.07600303330003000673927066556, 3.42646585207210023755408273697, 4.81045776780513136117897036124, 5.05118823487343792962296918251, 5.83941483718982158749066077151, 6.82428213875303319366584210901, 7.67916473818735356206356341237, 8.042512878501256079078227814948