L(s) = 1 | + (−1 + 6.92i)7-s − 25.9i·13-s + (24 − 13.8i)19-s + (−12.5 + 21.6i)25-s + (52.5 + 30.3i)31-s + (23.5 + 40.7i)37-s + 61·43-s + (−46.9 − 13.8i)49-s + (97.5 − 56.2i)61-s + (54.5 − 94.3i)67-s + (120 + 69.2i)73-s + (−65.5 − 113. i)79-s + (180 + 25.9i)91-s + 95.2i·97-s + (−175.5 + 101. i)103-s + ⋯ |
L(s) = 1 | + (−0.142 + 0.989i)7-s − 1.99i·13-s + (1.26 − 0.729i)19-s + (−0.5 + 0.866i)25-s + (1.69 + 0.977i)31-s + (0.635 + 1.10i)37-s + 1.41·43-s + (−0.959 − 0.282i)49-s + (1.59 − 0.922i)61-s + (0.813 − 1.40i)67-s + (1.64 + 0.949i)73-s + (−0.829 − 1.43i)79-s + (1.97 + 0.285i)91-s + 0.982i·97-s + (−1.70 + 0.983i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0165i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0165i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.835692450\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.835692450\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1 - 6.92i)T \) |
good | 5 | \( 1 + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + 25.9iT - 169T^{2} \) |
| 17 | \( 1 + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-24 + 13.8i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + 841T^{2} \) |
| 31 | \( 1 + (-52.5 - 30.3i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-23.5 - 40.7i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 1.68e3T^{2} \) |
| 43 | \( 1 - 61T + 1.84e3T^{2} \) |
| 47 | \( 1 + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-97.5 + 56.2i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-54.5 + 94.3i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 5.04e3T^{2} \) |
| 73 | \( 1 + (-120 - 69.2i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (65.5 + 113. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 6.88e3T^{2} \) |
| 89 | \( 1 + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 95.2iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02095862710318444675731854851, −9.382951432796655410231656925479, −8.334178410316347508708379663016, −7.73729636261113171769364985928, −6.55411938175752420868010541701, −5.55378113429104500795746660793, −4.99234295592989487063688917126, −3.33796403137262253926594716758, −2.63588596354056178943296316536, −0.887739736429597782747576954097,
0.958653013732935254240511749481, 2.35703640745463054226798789130, 3.90144159699070434728390289921, 4.40636601513099559497744753848, 5.81106448956747275137085565643, 6.73697380326256297213565021866, 7.46542230588668859006428427653, 8.380467038711262573335464690038, 9.572419445298507969830384001570, 9.901596327104109752522462137889