Properties

Label 2-756-3.2-c2-0-11
Degree $2$
Conductor $756$
Sign $i$
Analytic cond. $20.5995$
Root an. cond. $4.53866$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.13i·5-s − 2.64·7-s − 17.3i·11-s + 1.76·13-s + 9.02i·17-s − 27.3·19-s − 8.31i·23-s + 7.87·25-s − 35.4i·29-s − 45.7·31-s − 10.9i·35-s + 65.0·37-s − 55.5i·41-s + 46.5·43-s − 37.4i·47-s + ⋯
L(s)  = 1  + 0.827i·5-s − 0.377·7-s − 1.57i·11-s + 0.135·13-s + 0.530i·17-s − 1.44·19-s − 0.361i·23-s + 0.315·25-s − 1.22i·29-s − 1.47·31-s − 0.312i·35-s + 1.75·37-s − 1.35i·41-s + 1.08·43-s − 0.797i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $i$
Analytic conductor: \(20.5995\)
Root analytic conductor: \(4.53866\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (701, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1),\ i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.068416551\)
\(L(\frac12)\) \(\approx\) \(1.068416551\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + 2.64T \)
good5 \( 1 - 4.13iT - 25T^{2} \)
11 \( 1 + 17.3iT - 121T^{2} \)
13 \( 1 - 1.76T + 169T^{2} \)
17 \( 1 - 9.02iT - 289T^{2} \)
19 \( 1 + 27.3T + 361T^{2} \)
23 \( 1 + 8.31iT - 529T^{2} \)
29 \( 1 + 35.4iT - 841T^{2} \)
31 \( 1 + 45.7T + 961T^{2} \)
37 \( 1 - 65.0T + 1.36e3T^{2} \)
41 \( 1 + 55.5iT - 1.68e3T^{2} \)
43 \( 1 - 46.5T + 1.84e3T^{2} \)
47 \( 1 + 37.4iT - 2.20e3T^{2} \)
53 \( 1 + 0.0153iT - 2.80e3T^{2} \)
59 \( 1 + 88.2iT - 3.48e3T^{2} \)
61 \( 1 - 1.01T + 3.72e3T^{2} \)
67 \( 1 + 23.8T + 4.48e3T^{2} \)
71 \( 1 + 69.3iT - 5.04e3T^{2} \)
73 \( 1 + 100.T + 5.32e3T^{2} \)
79 \( 1 + 64.8T + 6.24e3T^{2} \)
83 \( 1 - 56.6iT - 6.88e3T^{2} \)
89 \( 1 + 39.7iT - 7.92e3T^{2} \)
97 \( 1 - 19.6T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08139798039818906533408051854, −8.967677925541079648971204970315, −8.311191257131522536042066989238, −7.26286752183436280477895330125, −6.24214966904001972873372239339, −5.82800971256996952951454049716, −4.21307904910398538176848788259, −3.32741651735493205892368488316, −2.26864987834278138947924095886, −0.37654096643183380859752236100, 1.35846107938571754513758883370, 2.63101307428717097411379296911, 4.16429368481307298216893640326, 4.79277148857386044227469891720, 5.90015630763933589507952800121, 6.96480251724726158536746151356, 7.70503936711657017774468063423, 8.875969811385718560791351768296, 9.362791939719258623984858570420, 10.26636650817196111540391348196

Graph of the $Z$-function along the critical line