Properties

Label 2-756-3.2-c2-0-1
Degree $2$
Conductor $756$
Sign $-1$
Analytic cond. $20.5995$
Root an. cond. $4.53866$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.87i·5-s + 2.64·7-s + 18.1i·11-s − 24.2·13-s − 2.43i·17-s + 0.0627·19-s − 31.9i·23-s − 22.2·25-s + 2.43i·29-s − 19.1·31-s + 18.1i·35-s + 1.12·37-s − 38.3i·41-s + 15.0·43-s + 25.0i·47-s + ⋯
L(s)  = 1  + 1.37i·5-s + 0.377·7-s + 1.65i·11-s − 1.86·13-s − 0.143i·17-s + 0.00330·19-s − 1.38i·23-s − 0.889·25-s + 0.0839i·29-s − 0.616·31-s + 0.519i·35-s + 0.0304·37-s − 0.935i·41-s + 0.350·43-s + 0.533i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $-1$
Analytic conductor: \(20.5995\)
Root analytic conductor: \(4.53866\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (701, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1),\ -1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7910344248\)
\(L(\frac12)\) \(\approx\) \(0.7910344248\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - 2.64T \)
good5 \( 1 - 6.87iT - 25T^{2} \)
11 \( 1 - 18.1iT - 121T^{2} \)
13 \( 1 + 24.2T + 169T^{2} \)
17 \( 1 + 2.43iT - 289T^{2} \)
19 \( 1 - 0.0627T + 361T^{2} \)
23 \( 1 + 31.9iT - 529T^{2} \)
29 \( 1 - 2.43iT - 841T^{2} \)
31 \( 1 + 19.1T + 961T^{2} \)
37 \( 1 - 1.12T + 1.36e3T^{2} \)
41 \( 1 + 38.3iT - 1.68e3T^{2} \)
43 \( 1 - 15.0T + 1.84e3T^{2} \)
47 \( 1 - 25.0iT - 2.20e3T^{2} \)
53 \( 1 - 41.2iT - 2.80e3T^{2} \)
59 \( 1 + 71.1iT - 3.48e3T^{2} \)
61 \( 1 + 37.2T + 3.72e3T^{2} \)
67 \( 1 + 100.T + 4.48e3T^{2} \)
71 \( 1 - 66.7iT - 5.04e3T^{2} \)
73 \( 1 + 93.1T + 5.32e3T^{2} \)
79 \( 1 + 36.2T + 6.24e3T^{2} \)
83 \( 1 - 156. iT - 6.88e3T^{2} \)
89 \( 1 + 135. iT - 7.92e3T^{2} \)
97 \( 1 - 124.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.36232875989379043205683307952, −10.00064218715903121603675529860, −9.006502708764450492569612584640, −7.48801802435276828877656200679, −7.33815707684699022637569978248, −6.40851868753621020101683898419, −5.05561242268921419468999443625, −4.28020800033416968573752522101, −2.77049060720728670344762583226, −2.10179627965368001254748582708, 0.26053617787314635530258894653, 1.54976854284167357739690444694, 3.05829682250630521593856315156, 4.36728518115642133539313073935, 5.22165665285636789283499477559, 5.86426347979510259132079977924, 7.33233005269799456489979454629, 8.069277953664498670859464440169, 8.905020444421467254897683166150, 9.505408694713164497839881497234

Graph of the $Z$-function along the critical line