L(s) = 1 | + (7.74 + 4.47i)5-s − 7·7-s + (7.74 − 4.47i)11-s + 3·13-s + (7.74 − 4.47i)17-s + (11 − 19.0i)19-s + (15.4 + 8.94i)23-s + (27.5 + 47.6i)25-s − 8.94i·29-s + (16.5 + 28.5i)31-s + (−54.2 − 31.3i)35-s + (−5.5 + 9.52i)37-s + 80.4i·41-s + 59·43-s + (−69.7 − 40.2i)47-s + ⋯ |
L(s) = 1 | + (1.54 + 0.894i)5-s − 7-s + (0.704 − 0.406i)11-s + 0.230·13-s + (0.455 − 0.263i)17-s + (0.578 − 1.00i)19-s + (0.673 + 0.388i)23-s + (1.10 + 1.90i)25-s − 0.308i·29-s + (0.532 + 0.921i)31-s + (−1.54 − 0.894i)35-s + (−0.148 + 0.257i)37-s + 1.96i·41-s + 1.37·43-s + (−1.48 − 0.856i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.412910763\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.412910763\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + 7T \) |
good | 5 | \( 1 + (-7.74 - 4.47i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-7.74 + 4.47i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 - 3T + 169T^{2} \) |
| 17 | \( 1 + (-7.74 + 4.47i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-11 + 19.0i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-15.4 - 8.94i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + 8.94iT - 841T^{2} \) |
| 31 | \( 1 + (-16.5 - 28.5i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (5.5 - 9.52i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 - 80.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 59T + 1.84e3T^{2} \) |
| 47 | \( 1 + (69.7 + 40.2i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (7.74 - 4.47i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (49.5 - 85.7i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (33.5 + 58.0i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 98.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-31 - 53.6i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (31.5 - 54.5i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 - 89.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-23.2 - 13.4i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 - 127T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04967033965484572870124244594, −9.513925862105959646758423598308, −8.860643565091056203958489195900, −7.33697922375243622170157822605, −6.52085806051182568893149381884, −6.06716717630518438956020274639, −5.00469146932523129916336074043, −3.32802452633330382584480182995, −2.73215060262311658242118196985, −1.23178464574414495672849603302,
1.00681899467459603939068923012, 2.12326701991976411876302400812, 3.49200632288317600556773137816, 4.73112210990119140432065238104, 5.83584508444882193150309056460, 6.22264372226963723454272584316, 7.37770638847468677710784806187, 8.681123507922296730120638230781, 9.334636030680648101263535845353, 9.869637467852446759089864941374