| L(s) = 1 | + (−7.74 − 4.47i)5-s − 7·7-s + (−7.74 + 4.47i)11-s + 3·13-s + (−7.74 + 4.47i)17-s + (11 − 19.0i)19-s + (−15.4 − 8.94i)23-s + (27.5 + 47.6i)25-s + 8.94i·29-s + (16.5 + 28.5i)31-s + (54.2 + 31.3i)35-s + (−5.5 + 9.52i)37-s − 80.4i·41-s + 59·43-s + (69.7 + 40.2i)47-s + ⋯ |
| L(s) = 1 | + (−1.54 − 0.894i)5-s − 7-s + (−0.704 + 0.406i)11-s + 0.230·13-s + (−0.455 + 0.263i)17-s + (0.578 − 1.00i)19-s + (−0.673 − 0.388i)23-s + (1.10 + 1.90i)25-s + 0.308i·29-s + (0.532 + 0.921i)31-s + (1.54 + 0.894i)35-s + (−0.148 + 0.257i)37-s − 1.96i·41-s + 1.37·43-s + (1.48 + 0.856i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.6677366147\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6677366147\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + 7T \) |
| good | 5 | \( 1 + (7.74 + 4.47i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (7.74 - 4.47i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 - 3T + 169T^{2} \) |
| 17 | \( 1 + (7.74 - 4.47i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-11 + 19.0i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (15.4 + 8.94i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 8.94iT - 841T^{2} \) |
| 31 | \( 1 + (-16.5 - 28.5i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (5.5 - 9.52i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + 80.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 59T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-69.7 - 40.2i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-7.74 + 4.47i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (49.5 - 85.7i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (33.5 + 58.0i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 98.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-31 - 53.6i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (31.5 - 54.5i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + 89.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (23.2 + 13.4i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 - 127T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30742233686700602524086962543, −9.103455525579060352793523959485, −8.635903292402900445362772201495, −7.56883092686493107544371326018, −7.00339069307514315250874062709, −5.67962522203753225697443410944, −4.60715884976714336370387170772, −3.86604625784137232836442949817, −2.73340261766517287531934598121, −0.73552856059806502328117005017,
0.36711322544758462576490947597, 2.67792567448761184700955414209, 3.49764827485059908181928769282, 4.27463415125437156555218152932, 5.80571616246889158464370743774, 6.61685755706568481593526322595, 7.65245399964570574086519771363, 8.005418492504720839602490293968, 9.257230057326965856003104392791, 10.21953704456705403970993237325