L(s) = 1 | + (−8.84 − 15.3i)5-s + (1.00 − 18.4i)7-s + (21.7 + 12.5i)11-s − 88.8i·13-s + (23.1 − 40.0i)17-s + (−37.2 + 21.5i)19-s + (162. − 94.0i)23-s + (−93.9 + 162. i)25-s − 275. i·29-s + (115. + 66.7i)31-s + (−292. + 148. i)35-s + (−50.7 − 87.8i)37-s + 348.·41-s − 266.·43-s + (222. + 384. i)47-s + ⋯ |
L(s) = 1 | + (−0.791 − 1.37i)5-s + (0.0541 − 0.998i)7-s + (0.596 + 0.344i)11-s − 1.89i·13-s + (0.329 − 0.571i)17-s + (−0.449 + 0.259i)19-s + (1.47 − 0.852i)23-s + (−0.751 + 1.30i)25-s − 1.76i·29-s + (0.669 + 0.386i)31-s + (−1.41 + 0.715i)35-s + (−0.225 − 0.390i)37-s + 1.32·41-s − 0.946·43-s + (0.689 + 1.19i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0724i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0724i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.471100769\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.471100769\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.00 + 18.4i)T \) |
good | 5 | \( 1 + (8.84 + 15.3i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-21.7 - 12.5i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 88.8iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-23.1 + 40.0i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (37.2 - 21.5i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-162. + 94.0i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 275. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (-115. - 66.7i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (50.7 + 87.8i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 348.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 266.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-222. - 384. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (369. + 213. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-21.8 + 37.8i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (286. - 165. i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (489. - 847. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 820. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-404. - 233. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (594. + 1.03e3i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 251.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-41.8 - 72.4i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 500. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.523186698474629944072521683050, −8.504132759988453776141277662146, −7.911669592671310100000910425445, −7.15520104908458037525004390612, −5.84645192930106990830263601745, −4.75562095882768215890690511810, −4.20910389412214500071055222539, −3.00961388595974616851199502730, −1.06081775482423745845782406066, −0.48695073688285731179257681011,
1.68779761067206672405134672191, 2.93933867506954498065138769509, 3.74851907304801999195858436014, 4.90718122927756614907625153526, 6.30130396552036836649045363577, 6.75954743762819333486297785648, 7.66328669431401097059813544636, 8.837767362798166085362637881098, 9.286827490560484702777419004785, 10.60709985931373188747317828817