| L(s) = 1 | + (4.94 + 8.56i)5-s + (2.97 + 18.2i)7-s + (58.1 + 33.5i)11-s + 88.2i·13-s + (34.5 − 59.7i)17-s + (101. − 58.6i)19-s + (−129. + 74.5i)23-s + (13.5 − 23.4i)25-s + 31.8i·29-s + (−14.1 − 8.17i)31-s + (−141. + 115. i)35-s + (−97.2 − 168. i)37-s − 238.·41-s + 50.6·43-s + (110. + 191. i)47-s + ⋯ |
| L(s) = 1 | + (0.442 + 0.766i)5-s + (0.160 + 0.987i)7-s + (1.59 + 0.920i)11-s + 1.88i·13-s + (0.492 − 0.853i)17-s + (1.22 − 0.708i)19-s + (−1.17 + 0.676i)23-s + (0.108 − 0.187i)25-s + 0.203i·29-s + (−0.0820 − 0.0473i)31-s + (−0.685 + 0.559i)35-s + (−0.431 − 0.748i)37-s − 0.908·41-s + 0.179·43-s + (0.343 + 0.594i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.283 - 0.958i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.283 - 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.502936021\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.502936021\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.97 - 18.2i)T \) |
| good | 5 | \( 1 + (-4.94 - 8.56i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-58.1 - 33.5i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 88.2iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-34.5 + 59.7i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-101. + 58.6i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (129. - 74.5i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 31.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (14.1 + 8.17i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (97.2 + 168. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 238.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 50.6T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-110. - 191. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-448. - 258. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-153. + 265. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-529. + 305. i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-119. + 206. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 264. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (507. + 293. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (265. + 460. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 989.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-230. - 399. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 92.1iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.861417989269994131291968282978, −9.443507903653018077895749889526, −8.796457498351461945317678640533, −7.28690188202096846622935743387, −6.80143347774711999606440611737, −5.90085067116722550588337287336, −4.78772887880411653492145281283, −3.72032703860932030865481883690, −2.40485711729262819010326082937, −1.55604638573764711177103783109,
0.75000739698439760299346567467, 1.40805665923959671736102245343, 3.33263207591357232510690415622, 4.01765292420977885270825977418, 5.38617540550767176341705807630, 5.95699830805315976783111644787, 7.11971002539424978068409416587, 8.192603505740747352226248630971, 8.640220228716435909577883594803, 10.00468354980743890460280913062