L(s) = 1 | + (5.32 + 9.23i)5-s + (18.4 − 1.58i)7-s + (58.6 + 33.8i)11-s + 59.7i·13-s + (−43.3 + 75.1i)17-s + (−125. + 72.1i)19-s + (−5.66 + 3.27i)23-s + (5.70 − 9.87i)25-s − 291. i·29-s + (45.4 + 26.2i)31-s + (112. + 161. i)35-s + (−45.3 − 78.6i)37-s + 188.·41-s + 61.9·43-s + (−24.8 − 43.0i)47-s + ⋯ |
L(s) = 1 | + (0.476 + 0.825i)5-s + (0.996 − 0.0856i)7-s + (1.60 + 0.928i)11-s + 1.27i·13-s + (−0.618 + 1.07i)17-s + (−1.50 + 0.871i)19-s + (−0.0513 + 0.0296i)23-s + (0.0456 − 0.0790i)25-s − 1.86i·29-s + (0.263 + 0.152i)31-s + (0.545 + 0.781i)35-s + (−0.201 − 0.349i)37-s + 0.716·41-s + 0.219·43-s + (−0.0771 − 0.133i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.210 - 0.977i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.210 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.443745412\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.443745412\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-18.4 + 1.58i)T \) |
good | 5 | \( 1 + (-5.32 - 9.23i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-58.6 - 33.8i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 59.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (43.3 - 75.1i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (125. - 72.1i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (5.66 - 3.27i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 291. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (-45.4 - 26.2i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (45.3 + 78.6i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 188.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 61.9T + 7.95e4T^{2} \) |
| 47 | \( 1 + (24.8 + 43.0i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (267. + 154. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (313. - 542. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (534. - 308. i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (78.5 - 136. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 915. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (105. + 60.6i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-345. - 598. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 16.1T + 5.71e5T^{2} \) |
| 89 | \( 1 + (492. + 852. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.69e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27580591873596833723226847729, −9.334474943773428578894587024091, −8.568881302277071485143905223477, −7.52934963421597372716142508764, −6.45566074119412527538818573678, −6.19757188557729448180744472250, −4.31938959155186412401470276485, −4.15484068871231210485519882682, −2.16693809702392457370895109718, −1.65380973090657511994811013814,
0.66569881824435156939133485387, 1.62177384401196561571927199751, 3.04341035420721709033895831459, 4.42011128709515626366852077050, 5.11825915535769413483761609213, 6.08998877924381528436475790853, 7.04235275512864171137272268946, 8.284025832929036479802206090450, 8.847505383287421681002716994976, 9.408787001115777501320538951440