L(s) = 1 | + (6.05 − 3.49i)5-s + (−1.44 + 6.84i)7-s + (−9.05 − 5.22i)11-s − 15.3·13-s + (−26.6 − 15.4i)17-s + (−12.8 − 22.2i)19-s + (23.6 − 13.6i)23-s + (11.9 − 20.6i)25-s − 0.0542i·29-s + (0.305 − 0.529i)31-s + (15.1 + 46.5i)35-s + (−22.4 − 38.9i)37-s + 65.8i·41-s + 14.0·43-s + (42.2 − 24.4i)47-s + ⋯ |
L(s) = 1 | + (1.21 − 0.698i)5-s + (−0.207 + 0.978i)7-s + (−0.823 − 0.475i)11-s − 1.17·13-s + (−1.57 − 0.906i)17-s + (−0.676 − 1.17i)19-s + (1.02 − 0.593i)23-s + (0.476 − 0.825i)25-s − 0.00186i·29-s + (0.00986 − 0.0170i)31-s + (0.432 + 1.32i)35-s + (−0.607 − 1.05i)37-s + 1.60i·41-s + 0.326·43-s + (0.899 − 0.519i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.714 + 0.699i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.714 + 0.699i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.9544288344\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9544288344\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.44 - 6.84i)T \) |
good | 5 | \( 1 + (-6.05 + 3.49i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (9.05 + 5.22i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + 15.3T + 169T^{2} \) |
| 17 | \( 1 + (26.6 + 15.4i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (12.8 + 22.2i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-23.6 + 13.6i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + 0.0542iT - 841T^{2} \) |
| 31 | \( 1 + (-0.305 + 0.529i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (22.4 + 38.9i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 65.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 14.0T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-42.2 + 24.4i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (54.9 + 31.7i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-68.4 - 39.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (53.1 + 92.0i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-29.9 + 51.9i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 20.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (32.4 - 56.2i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-16.9 - 29.3i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 57.0iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-129. + 74.8i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 56.2T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.498807578017064892636097834263, −9.153316964391714013843398651871, −8.400718467815461246291430254744, −7.04206557074922127201497839198, −6.22512214980078833791344770722, −5.11905112879343808636364296144, −4.82737172774479606038100427789, −2.69483722536379765361576833292, −2.22364882792155072127221219341, −0.29095243087827926519806786470,
1.79025511018201048184342850930, 2.68806747172333698404182933140, 4.06638298366068295997253288217, 5.12285792054253401027304993282, 6.19151088192888069017130455068, 6.93985567363439732530573414147, 7.67197531032463967175371040978, 8.916255703586659936541485168163, 9.853440398919901927349217677315, 10.48852199644124550126403575188