L(s) = 1 | + (1 − 6.92i)7-s − 13-s + (−13 − 22.5i)19-s + (−12.5 + 21.6i)25-s + (6.5 − 11.2i)31-s + (−23.5 − 40.7i)37-s − 61·43-s + (−46.9 − 13.8i)49-s + (−23.5 − 40.7i)61-s + (54.5 − 94.3i)67-s + (23 − 39.8i)73-s + (−65.5 − 113. i)79-s + (−1 + 6.92i)91-s − 169·97-s + (18.5 + 32.0i)103-s + ⋯ |
L(s) = 1 | + (0.142 − 0.989i)7-s − 0.0769·13-s + (−0.684 − 1.18i)19-s + (−0.5 + 0.866i)25-s + (0.209 − 0.363i)31-s + (−0.635 − 1.10i)37-s − 1.41·43-s + (−0.959 − 0.282i)49-s + (−0.385 − 0.667i)61-s + (0.813 − 1.40i)67-s + (0.315 − 0.545i)73-s + (−0.829 − 1.43i)79-s + (−0.0109 + 0.0761i)91-s − 1.74·97-s + (0.179 + 0.311i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.667 + 0.744i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.667 + 0.744i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.027723482\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.027723482\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1 + 6.92i)T \) |
good | 5 | \( 1 + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + T + 169T^{2} \) |
| 17 | \( 1 + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (13 + 22.5i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 - 841T^{2} \) |
| 31 | \( 1 + (-6.5 + 11.2i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (23.5 + 40.7i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 1.68e3T^{2} \) |
| 43 | \( 1 + 61T + 1.84e3T^{2} \) |
| 47 | \( 1 + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (23.5 + 40.7i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-54.5 + 94.3i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 5.04e3T^{2} \) |
| 73 | \( 1 + (-23 + 39.8i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (65.5 + 113. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 6.88e3T^{2} \) |
| 89 | \( 1 + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 169T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.852218101883997714662923008542, −9.032956476832882567278434776893, −8.034430059985955404672914864506, −7.20905142995761025942199221336, −6.46329547012433462424245939657, −5.22025132278372397808543749675, −4.31617560369884989574250271338, −3.30518944295131613251981219807, −1.85772796488314875252834147872, −0.34186250085416878058017519204,
1.66073187639190314480181455055, 2.79595242922258626276328431217, 4.04152519567405566634751024996, 5.16331406730430559333693250274, 6.01393129278515078147971554181, 6.86781387891752114782594712489, 8.203539810912642698680908734590, 8.511536301517553243445120366144, 9.704881941825894331196619624408, 10.30984779205768055054994423992