L(s) = 1 | + (5.22 − 3.01i)5-s + (2.27 − 6.62i)7-s + (8.17 + 4.71i)11-s + 13.3·13-s + (−9.36 − 5.40i)17-s + (2.20 + 3.81i)19-s + (17.2 − 9.95i)23-s + (5.67 − 9.83i)25-s − 10.6i·29-s + (−17.4 + 30.3i)31-s + (−8.09 − 41.4i)35-s + (−0.378 − 0.655i)37-s − 32.4i·41-s − 44.3·43-s + (70.3 − 40.6i)47-s + ⋯ |
L(s) = 1 | + (1.04 − 0.602i)5-s + (0.324 − 0.945i)7-s + (0.742 + 0.428i)11-s + 1.02·13-s + (−0.551 − 0.318i)17-s + (0.115 + 0.200i)19-s + (0.749 − 0.432i)23-s + (0.227 − 0.393i)25-s − 0.368i·29-s + (−0.564 + 0.977i)31-s + (−0.231 − 1.18i)35-s + (−0.0102 − 0.0177i)37-s − 0.790i·41-s − 1.03·43-s + (1.49 − 0.863i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.607 + 0.794i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.607 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.518163005\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.518163005\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.27 + 6.62i)T \) |
good | 5 | \( 1 + (-5.22 + 3.01i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-8.17 - 4.71i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 - 13.3T + 169T^{2} \) |
| 17 | \( 1 + (9.36 + 5.40i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-2.20 - 3.81i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-17.2 + 9.95i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + 10.6iT - 841T^{2} \) |
| 31 | \( 1 + (17.4 - 30.3i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (0.378 + 0.655i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + 32.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 44.3T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-70.3 + 40.6i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (17.0 + 9.87i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-38.9 - 22.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (20.5 + 35.5i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (45.7 - 79.3i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 11.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-10.2 + 17.7i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-57.5 - 99.7i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + 35.0iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-45.2 + 26.1i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 182.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03359507296862758215601270264, −9.098356269332476515326400788034, −8.564222566942082395413576187518, −7.26884750084388895247848752655, −6.54918564138296473995070332630, −5.51297439486645159593781559842, −4.58852130401421023750736598633, −3.60197725221195807950600611655, −1.93099855349301778703553506385, −0.990180422018044978877612690957,
1.44369415541577494764233150769, 2.50953999388081823079282149173, 3.63794482998280318510402004702, 5.03669929883611999862210475262, 6.09548022578678313063766055730, 6.37880123027340343646152107105, 7.70389893348012242424426619133, 8.911528970182799448837236122639, 9.166098884561919907005943459566, 10.30817943909287376532801628014