Properties

Label 2-756-108.11-c1-0-34
Degree $2$
Conductor $756$
Sign $0.539 - 0.841i$
Analytic cond. $6.03669$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.728 − 1.21i)2-s + (1.02 + 1.39i)3-s + (−0.939 + 1.76i)4-s + (−0.779 + 2.14i)5-s + (0.948 − 2.25i)6-s + (0.984 + 0.173i)7-s + (2.82 − 0.147i)8-s + (−0.904 + 2.86i)9-s + (3.16 − 0.614i)10-s + (5.69 − 2.07i)11-s + (−3.42 + 0.494i)12-s + (2.72 − 2.28i)13-s + (−0.506 − 1.32i)14-s + (−3.78 + 1.10i)15-s + (−2.23 − 3.31i)16-s + (−5.84 + 3.37i)17-s + ⋯
L(s)  = 1  + (−0.514 − 0.857i)2-s + (0.590 + 0.806i)3-s + (−0.469 + 0.882i)4-s + (−0.348 + 0.957i)5-s + (0.387 − 0.921i)6-s + (0.372 + 0.0656i)7-s + (0.998 − 0.0519i)8-s + (−0.301 + 0.953i)9-s + (1.00 − 0.194i)10-s + (1.71 − 0.624i)11-s + (−0.989 + 0.142i)12-s + (0.755 − 0.634i)13-s + (−0.135 − 0.352i)14-s + (−0.978 + 0.284i)15-s + (−0.558 − 0.829i)16-s + (−1.41 + 0.818i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.539 - 0.841i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.539 - 0.841i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $0.539 - 0.841i$
Analytic conductor: \(6.03669\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (659, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1/2),\ 0.539 - 0.841i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.22648 + 0.670409i\)
\(L(\frac12)\) \(\approx\) \(1.22648 + 0.670409i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.728 + 1.21i)T \)
3 \( 1 + (-1.02 - 1.39i)T \)
7 \( 1 + (-0.984 - 0.173i)T \)
good5 \( 1 + (0.779 - 2.14i)T + (-3.83 - 3.21i)T^{2} \)
11 \( 1 + (-5.69 + 2.07i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (-2.72 + 2.28i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (5.84 - 3.37i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1.21 - 0.701i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.430 - 2.44i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (1.90 - 2.26i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (-1.27 + 0.225i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (-4.61 - 7.99i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.27 + 1.52i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (2.90 + 7.99i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (1.14 - 6.50i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 5.43iT - 53T^{2} \)
59 \( 1 + (12.9 + 4.70i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-1.52 + 8.64i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-3.52 - 4.19i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (-1.92 - 3.34i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (1.77 - 3.07i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-0.893 + 1.06i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (6.03 + 5.06i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (11.5 + 6.66i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-7.40 + 2.69i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60736082547343870015437715128, −9.661956491079449535503192111574, −8.797004015603404467131740631662, −8.362278350446405684862899032841, −7.26657262953534968689831092701, −6.15205453431030127843927366766, −4.54506366699718430649896624687, −3.66822815259772804910412707254, −3.10357630305339891408748122025, −1.64743269915817684218398692307, 0.886664155663924990420599456575, 1.92160162247515833936197380233, 4.05952144474924728593684137816, 4.70390365824821636212103465573, 6.22360964518650822899977790072, 6.80354913872862819719433740676, 7.62837589498075932669185819958, 8.664289005304547598757414458478, 8.969050916465076145329741668724, 9.616149246689725954700448846330

Graph of the $Z$-function along the critical line