Properties

Label 2-756-108.11-c1-0-22
Degree $2$
Conductor $756$
Sign $0.383 - 0.923i$
Analytic cond. $6.03669$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.718 − 1.21i)2-s + (1.70 − 0.298i)3-s + (−0.967 + 1.75i)4-s + (−1.03 + 2.85i)5-s + (−1.58 − 1.86i)6-s + (−0.984 − 0.173i)7-s + (2.82 − 0.0783i)8-s + (2.82 − 1.01i)9-s + (4.22 − 0.784i)10-s + (−1.50 + 0.546i)11-s + (−1.12 + 3.27i)12-s + (−2.67 + 2.24i)13-s + (0.495 + 1.32i)14-s + (−0.920 + 5.17i)15-s + (−2.12 − 3.38i)16-s + (−1.75 + 1.01i)17-s + ⋯
L(s)  = 1  + (−0.507 − 0.861i)2-s + (0.985 − 0.172i)3-s + (−0.483 + 0.875i)4-s + (−0.464 + 1.27i)5-s + (−0.648 − 0.761i)6-s + (−0.372 − 0.0656i)7-s + (0.999 − 0.0277i)8-s + (0.940 − 0.339i)9-s + (1.33 − 0.248i)10-s + (−0.452 + 0.164i)11-s + (−0.326 + 0.945i)12-s + (−0.742 + 0.623i)13-s + (0.132 + 0.353i)14-s + (−0.237 + 1.33i)15-s + (−0.531 − 0.846i)16-s + (−0.425 + 0.245i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $0.383 - 0.923i$
Analytic conductor: \(6.03669\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (659, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1/2),\ 0.383 - 0.923i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.828850 + 0.553435i\)
\(L(\frac12)\) \(\approx\) \(0.828850 + 0.553435i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.718 + 1.21i)T \)
3 \( 1 + (-1.70 + 0.298i)T \)
7 \( 1 + (0.984 + 0.173i)T \)
good5 \( 1 + (1.03 - 2.85i)T + (-3.83 - 3.21i)T^{2} \)
11 \( 1 + (1.50 - 0.546i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (2.67 - 2.24i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (1.75 - 1.01i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.389 - 0.224i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.640 - 3.63i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (5.75 - 6.86i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (1.43 - 0.253i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (2.02 + 3.51i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-4.73 - 5.64i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-3.51 - 9.66i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (0.381 - 2.16i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 11.4iT - 53T^{2} \)
59 \( 1 + (4.14 + 1.50i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-1.36 + 7.72i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (8.90 + 10.6i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (3.14 + 5.43i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-6.22 + 10.7i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-1.61 + 1.93i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-6.37 - 5.34i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-13.8 - 8.01i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-7.00 + 2.54i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61747088650290936365190615273, −9.468467344148386643896513974563, −9.179904051210189054987468228111, −7.69915834489973509217151937452, −7.52876643022761930984513800798, −6.53646927432202667042931127894, −4.61689579633596052835251033606, −3.53074976741463876006357129872, −2.90895921255307313964546743433, −1.87345400866854461175546656664, 0.52025235369721862779737226749, 2.28742718211935787869287768872, 3.92979753556178461756360124483, 4.81389166731849364809043298250, 5.64289559668638400103424817279, 7.07783231542167142881844557397, 7.75658401804552262566168944291, 8.531678983055889861366793466212, 9.038129778803831881198696435530, 9.847450291358851627936634695360

Graph of the $Z$-function along the critical line