Properties

Label 2-755-1.1-c1-0-26
Degree $2$
Conductor $755$
Sign $1$
Analytic cond. $6.02870$
Root an. cond. $2.45534$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.476·2-s + 1.43·3-s − 1.77·4-s + 5-s + 0.683·6-s + 4.32·7-s − 1.79·8-s − 0.943·9-s + 0.476·10-s + 1.24·11-s − 2.54·12-s − 2.16·13-s + 2.05·14-s + 1.43·15-s + 2.68·16-s + 4.28·17-s − 0.449·18-s + 2.45·19-s − 1.77·20-s + 6.19·21-s + 0.592·22-s + 6.16·23-s − 2.57·24-s + 25-s − 1.03·26-s − 5.65·27-s − 7.66·28-s + ⋯
L(s)  = 1  + 0.336·2-s + 0.827·3-s − 0.886·4-s + 0.447·5-s + 0.278·6-s + 1.63·7-s − 0.635·8-s − 0.314·9-s + 0.150·10-s + 0.375·11-s − 0.733·12-s − 0.599·13-s + 0.550·14-s + 0.370·15-s + 0.672·16-s + 1.04·17-s − 0.105·18-s + 0.563·19-s − 0.396·20-s + 1.35·21-s + 0.126·22-s + 1.28·23-s − 0.526·24-s + 0.200·25-s − 0.202·26-s − 1.08·27-s − 1.44·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(755\)    =    \(5 \cdot 151\)
Sign: $1$
Analytic conductor: \(6.02870\)
Root analytic conductor: \(2.45534\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 755,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.381855717\)
\(L(\frac12)\) \(\approx\) \(2.381855717\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
151 \( 1 + T \)
good2 \( 1 - 0.476T + 2T^{2} \)
3 \( 1 - 1.43T + 3T^{2} \)
7 \( 1 - 4.32T + 7T^{2} \)
11 \( 1 - 1.24T + 11T^{2} \)
13 \( 1 + 2.16T + 13T^{2} \)
17 \( 1 - 4.28T + 17T^{2} \)
19 \( 1 - 2.45T + 19T^{2} \)
23 \( 1 - 6.16T + 23T^{2} \)
29 \( 1 + 3.43T + 29T^{2} \)
31 \( 1 - 6.59T + 31T^{2} \)
37 \( 1 + 6.50T + 37T^{2} \)
41 \( 1 + 7.18T + 41T^{2} \)
43 \( 1 + 5.03T + 43T^{2} \)
47 \( 1 + 1.80T + 47T^{2} \)
53 \( 1 + 7.58T + 53T^{2} \)
59 \( 1 - 13.8T + 59T^{2} \)
61 \( 1 - 12.6T + 61T^{2} \)
67 \( 1 - 12.8T + 67T^{2} \)
71 \( 1 - 0.592T + 71T^{2} \)
73 \( 1 + 6.68T + 73T^{2} \)
79 \( 1 + 3.56T + 79T^{2} \)
83 \( 1 + 4.36T + 83T^{2} \)
89 \( 1 + 15.7T + 89T^{2} \)
97 \( 1 + 10.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08387954474786248385912357143, −9.422329190039158636177563605875, −8.449845941818269157485180876433, −8.168947146215667007638833833879, −7.00273414387778769022804493298, −5.35200545490203191191854964337, −5.13793697911971185578677828612, −3.86322928784422490016143672383, −2.80871338647371157878412442674, −1.39789695314488501104990126287, 1.39789695314488501104990126287, 2.80871338647371157878412442674, 3.86322928784422490016143672383, 5.13793697911971185578677828612, 5.35200545490203191191854964337, 7.00273414387778769022804493298, 8.168947146215667007638833833879, 8.449845941818269157485180876433, 9.422329190039158636177563605875, 10.08387954474786248385912357143

Graph of the $Z$-function along the critical line