Properties

Label 2-755-1.1-c1-0-23
Degree $2$
Conductor $755$
Sign $-1$
Analytic cond. $6.02870$
Root an. cond. $2.45534$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2.41·3-s − 4-s + 5-s + 2.41·6-s − 2·7-s + 3·8-s + 2.82·9-s − 10-s + 11-s + 2.41·12-s − 0.414·13-s + 2·14-s − 2.41·15-s − 16-s − 4.82·17-s − 2.82·18-s + 8.65·19-s − 20-s + 4.82·21-s − 22-s + 6.07·23-s − 7.24·24-s + 25-s + 0.414·26-s + 0.414·27-s + 2·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.39·3-s − 0.5·4-s + 0.447·5-s + 0.985·6-s − 0.755·7-s + 1.06·8-s + 0.942·9-s − 0.316·10-s + 0.301·11-s + 0.696·12-s − 0.114·13-s + 0.534·14-s − 0.623·15-s − 0.250·16-s − 1.17·17-s − 0.666·18-s + 1.98·19-s − 0.223·20-s + 1.05·21-s − 0.213·22-s + 1.26·23-s − 1.47·24-s + 0.200·25-s + 0.0812·26-s + 0.0797·27-s + 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(755\)    =    \(5 \cdot 151\)
Sign: $-1$
Analytic conductor: \(6.02870\)
Root analytic conductor: \(2.45534\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 755,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
151 \( 1 - T \)
good2 \( 1 + T + 2T^{2} \)
3 \( 1 + 2.41T + 3T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - T + 11T^{2} \)
13 \( 1 + 0.414T + 13T^{2} \)
17 \( 1 + 4.82T + 17T^{2} \)
19 \( 1 - 8.65T + 19T^{2} \)
23 \( 1 - 6.07T + 23T^{2} \)
29 \( 1 + 2.17T + 29T^{2} \)
31 \( 1 - 0.171T + 31T^{2} \)
37 \( 1 + 1.17T + 37T^{2} \)
41 \( 1 + 8.82T + 41T^{2} \)
43 \( 1 + 10.4T + 43T^{2} \)
47 \( 1 + 11.6T + 47T^{2} \)
53 \( 1 + 1.17T + 53T^{2} \)
59 \( 1 - 11.8T + 59T^{2} \)
61 \( 1 + 12T + 61T^{2} \)
67 \( 1 + 4.75T + 67T^{2} \)
71 \( 1 + 1.65T + 71T^{2} \)
73 \( 1 - 14.5T + 73T^{2} \)
79 \( 1 - 4.82T + 79T^{2} \)
83 \( 1 + 2.75T + 83T^{2} \)
89 \( 1 - 4.82T + 89T^{2} \)
97 \( 1 + 18.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.774868213170081917276976705775, −9.405339853024141132834126292803, −8.365835630055788679543814735904, −7.05629044359739349273215587477, −6.54252808336559886268672965448, −5.32007766231248646305615638013, −4.84513083220428973500859540515, −3.34038387546127322723250631734, −1.34919031080963580864429907392, 0, 1.34919031080963580864429907392, 3.34038387546127322723250631734, 4.84513083220428973500859540515, 5.32007766231248646305615638013, 6.54252808336559886268672965448, 7.05629044359739349273215587477, 8.365835630055788679543814735904, 9.405339853024141132834126292803, 9.774868213170081917276976705775

Graph of the $Z$-function along the critical line