L(s) = 1 | + 3i·2-s + 3i·3-s − 4-s − 9·6-s + 20i·7-s + 21i·8-s − 9·9-s − 24·11-s − 3i·12-s − 74i·13-s − 60·14-s − 71·16-s + 54i·17-s − 27i·18-s + 124·19-s + ⋯ |
L(s) = 1 | + 1.06i·2-s + 0.577i·3-s − 0.125·4-s − 0.612·6-s + 1.07i·7-s + 0.928i·8-s − 0.333·9-s − 0.657·11-s − 0.0721i·12-s − 1.57i·13-s − 1.14·14-s − 1.10·16-s + 0.770i·17-s − 0.353i·18-s + 1.49·19-s + ⋯ |
Λ(s)=(=(75s/2ΓC(s)L(s)(−0.894−0.447i)Λ(4−s)
Λ(s)=(=(75s/2ΓC(s+3/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
75
= 3⋅52
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
4.42514 |
Root analytic conductor: |
2.10360 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ75(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 75, ( :3/2), −0.894−0.447i)
|
Particular Values
L(2) |
≈ |
0.340841+1.44382i |
L(21) |
≈ |
0.340841+1.44382i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3iT |
| 5 | 1 |
good | 2 | 1−3iT−8T2 |
| 7 | 1−20iT−343T2 |
| 11 | 1+24T+1.33e3T2 |
| 13 | 1+74iT−2.19e3T2 |
| 17 | 1−54iT−4.91e3T2 |
| 19 | 1−124T+6.85e3T2 |
| 23 | 1−120iT−1.21e4T2 |
| 29 | 1−78T+2.43e4T2 |
| 31 | 1−200T+2.97e4T2 |
| 37 | 1+70iT−5.06e4T2 |
| 41 | 1−330T+6.89e4T2 |
| 43 | 1+92iT−7.95e4T2 |
| 47 | 1+24iT−1.03e5T2 |
| 53 | 1+450iT−1.48e5T2 |
| 59 | 1+24T+2.05e5T2 |
| 61 | 1+322T+2.26e5T2 |
| 67 | 1+196iT−3.00e5T2 |
| 71 | 1+288T+3.57e5T2 |
| 73 | 1−430iT−3.89e5T2 |
| 79 | 1−520T+4.93e5T2 |
| 83 | 1+156iT−5.71e5T2 |
| 89 | 1+1.02e3T+7.04e5T2 |
| 97 | 1+286iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.03125201256977245588962213195, −13.73945717343954403496584134429, −12.34464803859620993708393201461, −11.15298426659519750706286487841, −9.889490218891267285911835915667, −8.499823731422232753226216326681, −7.63597275054706864707941696511, −5.86980239748208835300091317570, −5.25187529220978039219541695512, −2.89293842875589818093107360515,
1.01638563299130841948113444224, 2.73607558073614867963940151912, 4.42027967002133456287907778075, 6.62312989728905323968477608204, 7.56623647510769697029388780433, 9.357609616257843249023703694968, 10.45087068764999500448914841418, 11.47081566805891243564620641004, 12.25758712245231039242659271315, 13.52468146302563541010408213241