L(s) = 1 | + (11.5 + 11.5i)2-s + (−46.5 + 4.54i)3-s + 139. i·4-s + (−590. − 485. i)6-s + (632. − 632. i)7-s + (−131. + 131. i)8-s + (2.14e3 − 423. i)9-s − 2.86e3i·11-s + (−633. − 6.48e3i)12-s + (5.95e3 + 5.95e3i)13-s + 1.46e4·14-s + 1.47e4·16-s + (−1.80e4 − 1.80e4i)17-s + (2.97e4 + 1.99e4i)18-s + 5.60e4i·19-s + ⋯ |
L(s) = 1 | + (1.02 + 1.02i)2-s + (−0.995 + 0.0971i)3-s + 1.08i·4-s + (−1.11 − 0.917i)6-s + (0.697 − 0.697i)7-s + (−0.0908 + 0.0908i)8-s + (0.981 − 0.193i)9-s − 0.649i·11-s + (−0.105 − 1.08i)12-s + (0.751 + 0.751i)13-s + 1.42·14-s + 0.903·16-s + (−0.889 − 0.889i)17-s + (1.20 + 0.805i)18-s + 1.87i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.528 - 0.848i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.528 - 0.848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(2.47542 + 1.37469i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.47542 + 1.37469i\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (46.5 - 4.54i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-11.5 - 11.5i)T + 128iT^{2} \) |
| 7 | \( 1 + (-632. + 632. i)T - 8.23e5iT^{2} \) |
| 11 | \( 1 + 2.86e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + (-5.95e3 - 5.95e3i)T + 6.27e7iT^{2} \) |
| 17 | \( 1 + (1.80e4 + 1.80e4i)T + 4.10e8iT^{2} \) |
| 19 | \( 1 - 5.60e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + (-2.05e4 + 2.05e4i)T - 3.40e9iT^{2} \) |
| 29 | \( 1 - 1.93e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 2.48e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + (-8.97e4 + 8.97e4i)T - 9.49e10iT^{2} \) |
| 41 | \( 1 + 1.93e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 + (2.49e5 + 2.49e5i)T + 2.71e11iT^{2} \) |
| 47 | \( 1 + (4.38e4 + 4.38e4i)T + 5.06e11iT^{2} \) |
| 53 | \( 1 + (2.59e5 - 2.59e5i)T - 1.17e12iT^{2} \) |
| 59 | \( 1 - 2.92e6T + 2.48e12T^{2} \) |
| 61 | \( 1 + 9.06e5T + 3.14e12T^{2} \) |
| 67 | \( 1 + (-1.64e6 + 1.64e6i)T - 6.06e12iT^{2} \) |
| 71 | \( 1 + 3.70e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + (-2.11e5 - 2.11e5i)T + 1.10e13iT^{2} \) |
| 79 | \( 1 - 5.81e6iT - 1.92e13T^{2} \) |
| 83 | \( 1 + (-6.37e4 + 6.37e4i)T - 2.71e13iT^{2} \) |
| 89 | \( 1 + 1.03e7T + 4.42e13T^{2} \) |
| 97 | \( 1 + (-3.23e6 + 3.23e6i)T - 8.07e13iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.66153827793629578668052899868, −12.31533254102305655246656409925, −11.26583710314285650729918314685, −10.19566026681999515814286713134, −8.231213009820163223151702094511, −6.90470363839177498685003243399, −6.08680670595439951137794479742, −4.84413894956266139219133673511, −3.96874952046272984119770070325, −1.06381501485658580331184696457,
1.15206139756058913411284755959, 2.55542657483306406671412626926, 4.41807963406885781295597877942, 5.18890858550539079250469822883, 6.53670952327174654372694779495, 8.350290529358086053741320469364, 10.17726549262466707348304879443, 11.17680473996448673155786249316, 11.73901447391307366162835592122, 12.83925429775746362382907498713