L(s) = 1 | + (−11.5 + 11.5i)2-s + (4.54 + 46.5i)3-s − 139. i·4-s + (−590. − 485. i)6-s + (632. + 632. i)7-s + (131. + 131. i)8-s + (−2.14e3 + 423. i)9-s − 2.86e3i·11-s + (6.48e3 − 633. i)12-s + (5.95e3 − 5.95e3i)13-s − 1.46e4·14-s + 1.47e4·16-s + (1.80e4 − 1.80e4i)17-s + (1.99e4 − 2.97e4i)18-s − 5.60e4i·19-s + ⋯ |
L(s) = 1 | + (−1.02 + 1.02i)2-s + (0.0971 + 0.995i)3-s − 1.08i·4-s + (−1.11 − 0.917i)6-s + (0.697 + 0.697i)7-s + (0.0908 + 0.0908i)8-s + (−0.981 + 0.193i)9-s − 0.649i·11-s + (1.08 − 0.105i)12-s + (0.751 − 0.751i)13-s − 1.42·14-s + 0.903·16-s + (0.889 − 0.889i)17-s + (0.805 − 1.20i)18-s − 1.87i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.730 - 0.682i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.730 - 0.682i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.901946 + 0.355851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.901946 + 0.355851i\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-4.54 - 46.5i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (11.5 - 11.5i)T - 128iT^{2} \) |
| 7 | \( 1 + (-632. - 632. i)T + 8.23e5iT^{2} \) |
| 11 | \( 1 + 2.86e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + (-5.95e3 + 5.95e3i)T - 6.27e7iT^{2} \) |
| 17 | \( 1 + (-1.80e4 + 1.80e4i)T - 4.10e8iT^{2} \) |
| 19 | \( 1 + 5.60e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + (2.05e4 + 2.05e4i)T + 3.40e9iT^{2} \) |
| 29 | \( 1 + 1.93e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 2.48e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + (-8.97e4 - 8.97e4i)T + 9.49e10iT^{2} \) |
| 41 | \( 1 + 1.93e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 + (2.49e5 - 2.49e5i)T - 2.71e11iT^{2} \) |
| 47 | \( 1 + (-4.38e4 + 4.38e4i)T - 5.06e11iT^{2} \) |
| 53 | \( 1 + (-2.59e5 - 2.59e5i)T + 1.17e12iT^{2} \) |
| 59 | \( 1 + 2.92e6T + 2.48e12T^{2} \) |
| 61 | \( 1 + 9.06e5T + 3.14e12T^{2} \) |
| 67 | \( 1 + (-1.64e6 - 1.64e6i)T + 6.06e12iT^{2} \) |
| 71 | \( 1 + 3.70e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + (-2.11e5 + 2.11e5i)T - 1.10e13iT^{2} \) |
| 79 | \( 1 + 5.81e6iT - 1.92e13T^{2} \) |
| 83 | \( 1 + (6.37e4 + 6.37e4i)T + 2.71e13iT^{2} \) |
| 89 | \( 1 - 1.03e7T + 4.42e13T^{2} \) |
| 97 | \( 1 + (-3.23e6 - 3.23e6i)T + 8.07e13iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.62324618820313556608957628708, −11.74390384108959580092898192953, −10.70236693996717416996857653520, −9.439267212623857461958849722543, −8.675971151973411157639909981063, −7.79289690010718450549940436516, −6.08971971508371155132872907139, −5.04487641083915677150769218372, −3.06522236916551152473152069539, −0.52693738831085901707307128727,
1.23784409120956001678776619326, 1.83417068281189441529663115595, 3.69884909990440331555336042950, 5.98307722383599878494902638500, 7.66101598310070167626097691271, 8.305208774934152219572329471750, 9.704733581119548997106226852921, 10.77658150992034159845118414446, 11.76719114501935726042912568887, 12.54913378232990582214713388037