L(s) = 1 | + (9.04 − 9.04i)2-s + (41.6 + 21.3i)3-s − 35.7i·4-s + (569. − 183. i)6-s + (−248. − 248. i)7-s + (834. + 834. i)8-s + (1.27e3 + 1.77e3i)9-s + 3.55e3i·11-s + (763. − 1.48e3i)12-s + (9.13e3 − 9.13e3i)13-s − 4.49e3·14-s + 1.96e4·16-s + (2.46e3 − 2.46e3i)17-s + (2.76e4 + 4.51e3i)18-s + 3.62e4i·19-s + ⋯ |
L(s) = 1 | + (0.799 − 0.799i)2-s + (0.889 + 0.456i)3-s − 0.279i·4-s + (1.07 − 0.346i)6-s + (−0.273 − 0.273i)7-s + (0.576 + 0.576i)8-s + (0.583 + 0.811i)9-s + 0.805i·11-s + (0.127 − 0.248i)12-s + (1.15 − 1.15i)13-s − 0.437·14-s + 1.20·16-s + (0.121 − 0.121i)17-s + (1.11 + 0.182i)18-s + 1.21i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0207i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0207i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(4.30033 - 0.0445920i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.30033 - 0.0445920i\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-41.6 - 21.3i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-9.04 + 9.04i)T - 128iT^{2} \) |
| 7 | \( 1 + (248. + 248. i)T + 8.23e5iT^{2} \) |
| 11 | \( 1 - 3.55e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + (-9.13e3 + 9.13e3i)T - 6.27e7iT^{2} \) |
| 17 | \( 1 + (-2.46e3 + 2.46e3i)T - 4.10e8iT^{2} \) |
| 19 | \( 1 - 3.62e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + (-3.95e4 - 3.95e4i)T + 3.40e9iT^{2} \) |
| 29 | \( 1 - 6.16e4T + 1.72e10T^{2} \) |
| 31 | \( 1 + 2.27e4T + 2.75e10T^{2} \) |
| 37 | \( 1 + (1.94e5 + 1.94e5i)T + 9.49e10iT^{2} \) |
| 41 | \( 1 + 8.06e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 + (6.60e5 - 6.60e5i)T - 2.71e11iT^{2} \) |
| 47 | \( 1 + (-9.11e5 + 9.11e5i)T - 5.06e11iT^{2} \) |
| 53 | \( 1 + (2.67e5 + 2.67e5i)T + 1.17e12iT^{2} \) |
| 59 | \( 1 + 2.00e6T + 2.48e12T^{2} \) |
| 61 | \( 1 + 2.16e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + (-2.64e6 - 2.64e6i)T + 6.06e12iT^{2} \) |
| 71 | \( 1 + 1.38e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + (6.61e5 - 6.61e5i)T - 1.10e13iT^{2} \) |
| 79 | \( 1 + 2.77e6iT - 1.92e13T^{2} \) |
| 83 | \( 1 + (4.12e6 + 4.12e6i)T + 2.71e13iT^{2} \) |
| 89 | \( 1 + 4.51e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + (3.70e6 + 3.70e6i)T + 8.07e13iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.15936251633160601586384576573, −12.26476379262619321683438217072, −10.79555520957118544348493937583, −10.05527900683668171768619590220, −8.546942222933211627557914245316, −7.46217566010495924574042243389, −5.35269451817984952413581027624, −3.94118396803767641310788650706, −3.15964509661188282311599345098, −1.66670447737764012769697323761,
1.21834767704020071402590272457, 3.11970667876427702075783975307, 4.47893615713734240077891359860, 6.18268778800503569577249850188, 6.90051010873235805195802232264, 8.376666892206366305087581084525, 9.347786689132130392571623150815, 10.99215119485538365959782346352, 12.50687202450064000045917794497, 13.62060821570923874759970408407