L(s) = 1 | + (−10.4 + 10.4i)2-s + (2.10 − 46.7i)3-s − 91.1i·4-s + (467. + 511. i)6-s + (953. + 953. i)7-s + (−385. − 385. i)8-s + (−2.17e3 − 196. i)9-s − 3.82e3i·11-s + (−4.25e3 − 191. i)12-s + (−5.35e3 + 5.35e3i)13-s − 1.99e4·14-s + 1.97e4·16-s + (−2.29e3 + 2.29e3i)17-s + (2.48e4 − 2.07e4i)18-s − 4.12e4i·19-s + ⋯ |
L(s) = 1 | + (−0.925 + 0.925i)2-s + (0.0449 − 0.998i)3-s − 0.712i·4-s + (0.882 + 0.965i)6-s + (1.05 + 1.05i)7-s + (−0.266 − 0.266i)8-s + (−0.995 − 0.0898i)9-s − 0.865i·11-s + (−0.711 − 0.0320i)12-s + (−0.675 + 0.675i)13-s − 1.94·14-s + 1.20·16-s + (−0.113 + 0.113i)17-s + (1.00 − 0.838i)18-s − 1.38i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.563 - 0.826i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.563 - 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.987985 + 0.522053i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.987985 + 0.522053i\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.10 + 46.7i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (10.4 - 10.4i)T - 128iT^{2} \) |
| 7 | \( 1 + (-953. - 953. i)T + 8.23e5iT^{2} \) |
| 11 | \( 1 + 3.82e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + (5.35e3 - 5.35e3i)T - 6.27e7iT^{2} \) |
| 17 | \( 1 + (2.29e3 - 2.29e3i)T - 4.10e8iT^{2} \) |
| 19 | \( 1 + 4.12e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + (-4.54e4 - 4.54e4i)T + 3.40e9iT^{2} \) |
| 29 | \( 1 - 1.17e5T + 1.72e10T^{2} \) |
| 31 | \( 1 + 1.02e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + (-2.52e5 - 2.52e5i)T + 9.49e10iT^{2} \) |
| 41 | \( 1 - 8.02e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 + (-5.15e5 + 5.15e5i)T - 2.71e11iT^{2} \) |
| 47 | \( 1 + (-1.26e5 + 1.26e5i)T - 5.06e11iT^{2} \) |
| 53 | \( 1 + (-1.43e6 - 1.43e6i)T + 1.17e12iT^{2} \) |
| 59 | \( 1 - 1.54e6T + 2.48e12T^{2} \) |
| 61 | \( 1 - 2.10e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + (-1.30e5 - 1.30e5i)T + 6.06e12iT^{2} \) |
| 71 | \( 1 + 5.11e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + (-3.26e5 + 3.26e5i)T - 1.10e13iT^{2} \) |
| 79 | \( 1 - 4.71e6iT - 1.92e13T^{2} \) |
| 83 | \( 1 + (-1.64e6 - 1.64e6i)T + 2.71e13iT^{2} \) |
| 89 | \( 1 - 6.03e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + (5.25e5 + 5.25e5i)T + 8.07e13iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.36736626498972154069301448798, −12.04266476243742049269079154707, −11.24037989700778228659665192894, −9.188533792676671949360807407974, −8.556107949201648656651271006487, −7.56641184673386377013890352806, −6.50909794862952988326942758063, −5.29189673717622020746425819075, −2.59554513048915725961462956287, −0.941146955707948708904550101108,
0.70646539826407515528426803333, 2.31856411351871959130118697411, 4.00923731376229086212903173282, 5.28408657183663476516836198148, 7.58239218931880736978410320987, 8.653787327022037328671021644173, 9.956772854093759417101500643410, 10.45384852534203218955053996678, 11.33680497968816609789034792059, 12.50597811843910801563528737381