L(s) = 1 | + (5.42 − 5.42i)2-s + (−13.1 + 44.8i)3-s + 69.0i·4-s + (172. + 314. i)6-s + (775. + 775. i)7-s + (1.06e3 + 1.06e3i)8-s + (−1.84e3 − 1.17e3i)9-s + 1.97e3i·11-s + (−3.10e3 − 905. i)12-s + (6.60e3 − 6.60e3i)13-s + 8.41e3·14-s + 2.77e3·16-s + (−2.33e4 + 2.33e4i)17-s + (−1.63e4 + 3.61e3i)18-s + 9.98e3i·19-s + ⋯ |
L(s) = 1 | + (0.479 − 0.479i)2-s + (−0.280 + 0.959i)3-s + 0.539i·4-s + (0.325 + 0.595i)6-s + (0.854 + 0.854i)7-s + (0.738 + 0.738i)8-s + (−0.842 − 0.538i)9-s + 0.448i·11-s + (−0.517 − 0.151i)12-s + (0.833 − 0.833i)13-s + 0.820·14-s + 0.169·16-s + (−1.15 + 1.15i)17-s + (−0.662 + 0.146i)18-s + 0.333i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.669 - 0.743i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.669 - 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.821691 + 1.84533i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.821691 + 1.84533i\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (13.1 - 44.8i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-5.42 + 5.42i)T - 128iT^{2} \) |
| 7 | \( 1 + (-775. - 775. i)T + 8.23e5iT^{2} \) |
| 11 | \( 1 - 1.97e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + (-6.60e3 + 6.60e3i)T - 6.27e7iT^{2} \) |
| 17 | \( 1 + (2.33e4 - 2.33e4i)T - 4.10e8iT^{2} \) |
| 19 | \( 1 - 9.98e3iT - 8.93e8T^{2} \) |
| 23 | \( 1 + (2.45e4 + 2.45e4i)T + 3.40e9iT^{2} \) |
| 29 | \( 1 + 1.35e5T + 1.72e10T^{2} \) |
| 31 | \( 1 + 1.28e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + (-2.74e5 - 2.74e5i)T + 9.49e10iT^{2} \) |
| 41 | \( 1 - 2.18e4iT - 1.94e11T^{2} \) |
| 43 | \( 1 + (8.22e4 - 8.22e4i)T - 2.71e11iT^{2} \) |
| 47 | \( 1 + (-4.00e5 + 4.00e5i)T - 5.06e11iT^{2} \) |
| 53 | \( 1 + (-5.40e5 - 5.40e5i)T + 1.17e12iT^{2} \) |
| 59 | \( 1 + 1.84e6T + 2.48e12T^{2} \) |
| 61 | \( 1 - 1.57e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + (7.81e5 + 7.81e5i)T + 6.06e12iT^{2} \) |
| 71 | \( 1 + 7.66e5iT - 9.09e12T^{2} \) |
| 73 | \( 1 + (-8.53e5 + 8.53e5i)T - 1.10e13iT^{2} \) |
| 79 | \( 1 + 6.22e6iT - 1.92e13T^{2} \) |
| 83 | \( 1 + (-4.42e6 - 4.42e6i)T + 2.71e13iT^{2} \) |
| 89 | \( 1 - 1.97e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + (-7.15e6 - 7.15e6i)T + 8.07e13iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.30187740804899614376993530859, −12.26418318781051627229612546786, −11.29060468868738642654621152418, −10.56252732636473517071664491489, −8.903695171544785345590218055993, −8.060613723118616793644360038235, −5.92261501620384182766010738037, −4.71231160192618178806921008398, −3.63641703202702363070045349809, −2.09882008792101972639765133934,
0.60539630840262360253091229409, 1.82236642283097925562878966304, 4.26581848526350609478618042557, 5.55764109591414450432077917318, 6.73678202344804565566575304038, 7.58090455737347733784474464513, 9.110846617478141472127781244337, 10.94558009861276483045639459806, 11.38918959920498909850928082890, 13.17056899880354585628263369503