Properties

Label 2-7488-1.1-c1-0-113
Degree $2$
Conductor $7488$
Sign $-1$
Analytic cond. $59.7919$
Root an. cond. $7.73252$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 4·11-s − 13-s + 6·17-s − 6·19-s − 5·25-s − 2·29-s − 6·31-s − 10·37-s − 8·41-s − 12·43-s − 12·47-s − 3·49-s − 6·53-s − 2·61-s − 2·67-s + 8·71-s + 14·73-s + 8·77-s + 4·79-s + 8·83-s − 4·89-s − 2·91-s + 14·97-s − 18·101-s + 4·103-s − 4·107-s + ⋯
L(s)  = 1  + 0.755·7-s + 1.20·11-s − 0.277·13-s + 1.45·17-s − 1.37·19-s − 25-s − 0.371·29-s − 1.07·31-s − 1.64·37-s − 1.24·41-s − 1.82·43-s − 1.75·47-s − 3/7·49-s − 0.824·53-s − 0.256·61-s − 0.244·67-s + 0.949·71-s + 1.63·73-s + 0.911·77-s + 0.450·79-s + 0.878·83-s − 0.423·89-s − 0.209·91-s + 1.42·97-s − 1.79·101-s + 0.394·103-s − 0.386·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7488\)    =    \(2^{6} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(59.7919\)
Root analytic conductor: \(7.73252\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7488} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64318606322212896793502114540, −6.74885857601312734498011594370, −6.29726020464242302145032155270, −5.26907258940557511614007229475, −4.86255818677025553674986843061, −3.74086617900481051255118226359, −3.42875280862789178740168493737, −1.89609049823861750791828359250, −1.56722806823473287981560740603, 0, 1.56722806823473287981560740603, 1.89609049823861750791828359250, 3.42875280862789178740168493737, 3.74086617900481051255118226359, 4.86255818677025553674986843061, 5.26907258940557511614007229475, 6.29726020464242302145032155270, 6.74885857601312734498011594370, 7.64318606322212896793502114540

Graph of the $Z$-function along the critical line